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Artificial intelligence enables whole-body positron emission
tomography scans with minimal radiation exposure
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Abstract
Purpose To generate diagnostic 18F-FDG PET images of pediatric cancer patients from ultra-low-dose 18F-FDG PET input
images, using a novel artificial intelligence (AI) algorithm.
Methods We used whole-body 18F-FDG-PET/MRI scans of 33 children and young adults with lymphoma (3–30 years) to develop a
convolutional neural network (CNN), which combines inputs from simulated 6.25% ultra-low-dose 18F-FDG PET scans and simul-
taneously acquired MRI scans to produce a standard-dose 18F-FDG PET scan. The image quality of ultra-low-dose PET scans, AI-
augmented PET scans, and clinical standard PET scans was evaluated by traditional metrics in computer vision and by expert
radiologists and nuclear medicine physicians, using Wilcoxon signed-rank tests and weighted kappa statistics.
Results The peak signal-to-noise ratio and structural similarity index were significantly higher, and the normalized root-mean-
square error was significantly lower on the AI-reconstructed PET images compared to simulated 6.25% dose images (p < 0.001).
Compared to the ground-truth standard-dose PET, SUVmax values of tumors and reference tissues were significantly higher on
the simulated 6.25% ultra-low-dose PET scans as a result of image noise. After the CNN augmentation, the SUVmax values were
recovered to values similar to the standard-dose PET. Quantitative measures of the readers’ diagnostic confidence demonstrated
significantly higher agreement between standard clinical scans and AI-reconstructed PET scans (kappa = 0.942) than 6.25% dose
scans (kappa = 0.650).
Conclusions Our CNNmodel could generate simulated clinical standard 18F-FDG PET images from ultra-low-dose inputs, while
maintaining clinically relevant information in terms of diagnostic accuracy and quantitative SUV measurements.
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Introduction

In many patients with cancer, the metabolic information from
18F-FDG PET/CT scans is required to provide accurate tumor
diagnoses and to monitor response to treatment [1–3].
However, diagnostic 18F-FDG PET/CT scans involve consid-
erable radiation exposure [4, 5]. Several groups independently
reported that the radiation exposure from diagnostic CT scans is
associated with an increased risk of developing secondary can-
cers later in life [6–8]. This is particularly concerning for chil-
dren, as they are more sensitive to radiation effects than adults
[9]. For example, a patient with lymphoma who undergoes five
PET/CT scans (including an 18F-FDG PET and diagnostic CT
scan as often required for pediatric treatment protocols) will be
exposed to 10–15 mSv of ionizing radiation per scan, which is
50–75 mSv in total [10]. Direct evidence from human popula-
tion studies showed that doses of 50–100 mSv (protracted ex-
posure) or 10–50 mSv (acute exposure) increase the risk of
developing secondary cancers later in life [9]. While advances
in cancer therapy have increased the number of pediatric cancer
survivors, these patients now live long enough to encounter
secondary cancers [5, 9, 11, 12]. Therefore, the Image Gently
campaign advocates for practitioners to provide the least possi-
ble radiation exposure when examining pediatric patients [13].
Integrated 18F-FDG PET/MRI saves radiation by replacing CT
with radiation-free MRI scans [14, 15]. This addresses the ra-
diation exposure from CT scans. A clinical standard 18F-FDG
PET/CT scan is associated with about 6–7 mSv of radiation
exposure for a clinical CT scan and 6–7 mSv for the 18F-FDG
PET [12, 14]. While many studies have focused on replacing
CT with MRI for anatomical co-registration of 18F-FDG data,
the reduction of the injected radiotracer dose has received less
attention thus far. A major bottleneck to reducing radiotracer
doses for 18F-FDGPET scans is increased image noise [16] and
resultant decreased diagnostic accuracy of ultra-low-dose scans
[17]. We hypothesized that this problem could be solved by
training a deep convolutional neural network (CNN) to inte-
grate information from ultra-low-dose PET images with ana-
tomical information from simultaneously acquiredMRI images
to generate simulated standard-dose PET images.

The main innovation of our work is fourfold: (1) We ex-
plored ultra-low-dose 18F-FDG PET imaging using CNN-
based image data augmentation.While previous studies inves-
tigated CNN for augmentation of 18F-FDG PET scans for
adult patients [18–21], we focused on pediatric patients and
young adults, for whom radiation safety is particularly impor-
tant. (2) We utilized information from simultaneously ac-
quired MRI scans to reconstruct ultra-low-dose whole-body
18F-FDG PET scans. This approach has been previously ap-
plied for image reconstruction of brain images [19, 20, 22],
but not whole-body images. The inclusion of MRI data into
the CNN improves the depiction of anatomical detail that
could be missed if only the low-dose 18F-FDG PET was used

as input [22]. (3) We incorporated an attention-weighted loss
function to enhance sensitivity of our model to reconstruct the
significant regions where lesions occur. Pioneering work in
this area has been done by Ouyang et al. [23]. The approach
contributes more to the loss function during training in regions
where lesions occur, such as perivascular areas where lymph
nodes are common. Making the model pay more attention to
the anatomical regions with high frequency of pathology
could protect the loss and computed gradients from over-
whelming by relatively irrelevant pixels in whole-body scans.
In this manner, less training data are required, which is critical
in the domain of pediatric cancer imaging where imaging data
are relatively sparse. (4) We conducted a task-specific region-
based clinical evaluation. The reconstructed PET images were
not only evaluated by traditional metrics in computer vision
but also assessed by expert radiologists and nuclear medicine
physicians in terms of the overall image quality, diagnostic
accuracy, and diagnostic confidence. To date, no comprehen-
sive region-based clinical evaluation was conducted in such
whole-body PET image enhancement studies. Thus, the pur-
pose of our study was to generate diagnostic 18F-FDG PET
images of pediatric cancer patients from ultra-low-dose 18F-
FDG PET input images, using a novel CNN algorithm.

Materials and methods

Patients and image acquisition

This Health Insurance Portability and Accountability Act–
compliant clinical study was approved by our respective insti-
tutional review boards and was performed as a secondary
analysis of prospectively acquired data.Written informed con-
sent was obtained from all adult patients and all parents of
pediatric patients. In addition, children were asked to give
their assent. Between July 2015 and June 2019, we enrolled
33 children and young adults (14 female, 9 male) with lym-
phoma at two centers (University of Tübingen, Germany, and
Stanford University, CA, USA) who underwent integrated
18F-FDG PET/MRI scans for tumor staging. Twenty-three
patients enrolled at Stanford had a mean age of 17 ± 7 years
(range: 6–30 years), and 11 patients enrolled at Tübingen had
a mean age of 14 ± 5 years (range: 3–18 years). The patients at
Stanford underwent a whole-body integrated 18F-FDG PET/
MRI scan on a 3 T Signa PET/MRI scanner (GE Healthcare,
Milwaukee, WI, USA) at 1 h after intravenous injection of
18F-FDG at a dose of 3 MBq/kg, using a 32-channel torso
phased array coil and an eight-channel, receive-only head coil.
PET data were acquired simultaneously with contrast-
enhanced T1-weighted gradient echo scans, using a 25-cm
transaxial FOV and 3:30-min acquisitions per PET bed.
Tübingen patients underwent a whole-body integrated 18F-
FDG PET/MRI scan on a 3 T Signa PET/MRI scanner
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(Siemens Healthineers, Erlangen, Germany), using a 16-
channel torso phased array coil and a 16-channel head coil.
PET data were acquired simultaneously with contrast-
enhanced T1-weighted gradient echo MRI scans, using a 25-
cm transaxial FOV and 4-min acquisitions per PET bed.
Radiotracer input data were used to generate 100% dose 18F-
FDG PET images. Moreover, 6.25% (0.18 mBq/kg) low-dose
18F-FDG PET images were simulated by unlisting the PET
list-mode data and reconstructing them based on the percent-
age of used counts [24].

CNN architecture

We trained and cross-validated a CNN reconstruction model to
augment whole-body 18F-FDG PET/MRI scans of 23 subjects
with lymphoma. The inputs for the model are axial simulated
ultra-low-dose 18F-FDG PET images and simultaneously ac-
quired axial contrast-enhanced T1-weighted MRI image. The
outputs are AI-reconstructed 18F-FDG PET images, which
should resemble a standard-dose 18F-FDG PET scan (Fig. 1).

We designed the reconstruction network based on an en-
hanced deep super-resolution network (EDSR) [25] – the
state-of-the-art image reconstruction network. However, our
model is significantly different from EDSR and particularly
tailored for the whole-body 18F-FDG PET reconstruction. Our
network is different in four key ways:

(1) We utilized information from simultaneously acquired
MRI scans. We hypothesized that using only a single
simulated ultra-low-dose 18F-FDG PET image as input
may not provide enough information to reconstruct de-
tailed anatomical structures and may generate hallucina-
tion image artifacts. The information from simultaneous-
ly acquiredMRI scans can be used to provide anatomical
information.

(2) We applied middle fusion to integrate MRI and 18F-FDG
PET images. Rather than concatenating the MRI and
18F-FDG PET at the input level, we combine them in
the feature space.We assume that early fusionmight lose
information as the characteristics of 18F-FDG PET and
MRI modalities are quite different. The benefit of mid-
fusion as opposed to early fusion was observed in the
initial experiment. The two modalities are integrated af-
ter the fourth main residual block. Note that the PET
branch is built upon a residual block, while the MRI
branch is built upon pure convolutional layers.

(3) A skip connection between the ultra-low-dose 18F-FDG
PET input and the final prediction layer is added to alle-
viate the burden of carrying identity information in the
reconstruction network.

(4) The reconstruction network is a slice-wise model, which
considers multi-slice inputs. The input consists of 5-slice
LAVA MRI and 5-slice ultra-low-dose 18F-FDG PET

images, and the output is a synthetic standard-dose 18F-
FDG PET slice. Such input scheme provides the network
with 2.5D information, reduces image noise, and ensures
vertical spatial consistency. The proposed network con-
sists of 44 convolution layers in total.

Preprocessing steps: For each baseline scan, we used ITK-
SNAP to obtain the foreground body areas with the MRI
image as the reference. The foreground body mask was used
to zero out background signals of MRI, standard-dose PET,
and simulated ultra-low-dose PET. Then, zero-mean (the
mean value of the nonzero region) and unit-variance normal-
ization was applied within the foreground body area before
feeding them to the CNN model. The input consists of 5-slice
LAVA MRI and 5-slice ultra-low-dose PET image. The size
of each slice is 512×512 (fixed).

Model training: The CNN reconstruction model was opti-
mized using Adam with parameters: learning rate, 1e-6; β1,
0.9; β2, 0.999; and batch size, 1. Each trainable node in the
CNN was regularized with L1 loss and weight decay of
0.0001. The weighing parameter to balance content loss and
regularization loss is 0.001. In the initial experiment, early
stopping (when the validation accuracy does not improve,
the training will be stopped) was used to set the number of
epochs for training. In our experiment, it is ten epochs and we
applied it in the leave-one-out cross-validation experiments.
The proposed network consists of 44 convolution layers in
total. The filter size is 3×3 and the number of filters is 64 for
each convolutional layer besides the final layer.

Attention-weighted loss

Weighted loss function was initially proposed to tackle the
common issue of imbalanced data in background/foreground
classification. By weighing underrepresented categories, a
weighted loss function compensates the bias of training loss
for the minority categories. In our work, we designed the
attention-weighted loss by augmenting the loss function with
a weight value corresponding to the significant regions of
whole-body scans, specifically visceral organs and lymph
node regions that are common areas where tumors occur.
While all 18F-FDG PET data are augmented by our algorithm,
the CNN pays particular attention to these areas. This encoded
prior knowledge in spatial anatomy could enable the network
to converge quickly, simplify the training, and improve qual-
ity of enhancing image quality of images of cancer lesions.
Figure 1b shows the calculation of the attention-weighted loss
function in the training phase.

The generation of attention mask

For the training dataset, we used ITK-SNAP (32) to obtain the
attention masks that highlight the high-clinical-value regions.

Eur J Nucl Med Mol Imaging



Potential tumor areas along the main vessels, mediastinum,
liver, and spleen were segmented as attention areas with the
MRI image as the reference. Then, the rigid attention mask
was transformed to a soft attention mask via Gaussian distri-
bution. The final attention mask to the loss function is a
Gaussian heatmap produced by four variables: the center
and standard deviations of the Gaussian distribution of the
rough target region mask of the scan, as shown in
Supplementary Figure 7.

Training details

We trained our model using Stanford baseline 18F-FDG-PET/
MR scans of 23 children and young adults with malignant
lymphoma. The large data requirement for training CNN is a
limitation for pediatric applications, as there are not many of
these studies. Proof-of-concept studies of CNN for pediatric
oncology applications are hampered by sparse data [26]. To
overcome the challenge, we adopted leave-one-out cross-val-
idation. The dataset was divided into 23-folds. During train-
ing, 22 of the folds were used as training set, whereas the
remaining one-fold was used for testing. We iterated 23 times
to go through all combinations and produce the final AI-
reconstructed PET images.

In the initial experiment (18 subjects for training and 5
subjects for validation), early stopping (when the validation
accuracy does not improve, the training will be stopped) was
used to set the number of epochs for training. In our experi-
ment, it is ten epochs and we applied the same number of
epochs (10 epochs) in the leave-one-out cross-validation ex-
periments. For leave-one-out cross-validation, we iterated 23-

folds, and for each fold, only one final AI-reconstructed PET
image was produced. In this manner, we avoid information
leakage during the generation of the final AI-reconstructed
PET images.

For the comparison study that should show the superiority
of adding the MRI input information and attention-weighted
loss, we trained the comparison models on 14 subjects, vali-
dated on 3 subjects, and then tested on the remaining 6 sub-
jects (Supplementary Data).

Computational assessment

For the evaluation part, we used three computational metrics
in computer vision to evaluate the performance of our net-
works, including peak signal-to-noise ratio (PSNR), the struc-
tural similarity index (SSIM), and the normalized root-mean-
square error (NRMSE) (Supplementary Data).

Clinical assessment

To understand the impact of our CNN on tumor detection, three
clinical imaging experts (one radiologist, one nuclear medicine
physician, and one dual-trained radiologist/nuclear medicine
physician) determined the presence or absence of tumor lesions
in 20 anatomical regions (Supplementary Table 1) per patient on
the ultra-low-dose 18F-FDG PET scan, the AI-augmented ultra-
low-dose 18F-FDG PET scan, and the 100% standard-dose 18F-
FDG PET scan (in total 20 regions × 23 patients = 460 anatom-
ical regions analyzed by each reviewer). The reviewers were
blinded to clinical data and the type of the exam and analyzed
the three different scan types in a random order and with an

Ultra-low-dose PET

LAVA MRI

Inputs

Attention-weighted Loss

AI-reconstructed PET Groundtruth standard-dose PET Attention Mask

( )

Reconstruction Net

Concatenation
AI-reconstructed PET

Output

Ultra-low-dose PET

LAVA MRI

Inputsa

b

Attention-weighted Loss

AI-reconstructed PET Groundtruth standard-dose PET Attention Mask

( )

Reconstruction Net

Concatenation
AI-reconstructed PET

Output

Fig. 1 The pipeline of the CNN reconstruction net. a The evaluation
framework of the PET reconstruction CNN. It inputs the simulated
ultra-low-dose 18F-FDG PET and contrast-enhanced T1-weighted MRI
images and outputs the synthetized standard-dose 18F-FDG PET images.
The PET and MRI images are integrated at the mid-level after feature

extraction; a skip connection is added to the CNN in order to connect the
ultra-low-dose 18F-FDG PET images with the final reconstruction. b The
calculation process of the attention-weighted loss. The attention mask
highlights the tumor area
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interval of at least 2 weeks to minimize recall bias. The clinical
experts rated the visibility of lesions in these regions according to
a Likert scale (1 – tumor definitely not present, 2 – tumor prob-
ably not present, 3 – undecided, 4 – tumor probably present, 5 –
tumor definitely present). The combination of all clinical imaging
tests and biopsies on all available imaging studies was used to
generate a standard of reference for these evaluations. The lesion
diagnostic metrics on the ultra-low-dose 18F-FDG PET scan, the
AI-augmented ultra-low-dose 18F-FDG PET scan, and the 100%
standard-dose 18F-FDG PET scan were compared with the stan-
dard of reference using confusionMatrix() function from R pack-
age caret.

Measurements of SUV values from tumors in the PET
images are important for tumor detection and for quantitative
monitoring of tumor therapy response. Reducing the 18F-FDG
radiotracer dose can lead to increased image noise and affect
these measurements. To evaluate whether flawed SUV mea-
surements could be recovered by our CNN, one nuclear med-
icine physician measured the SUVmax and SUVmean (standard-
ized uptake value) of the lesion with the highest SUV in the 20
refined regions per patient as well as the SUVmean, SUVstd, and
SUVmax of the liver (3-cm ROI) and mediastinal blood pool
(2-cm ROI) across the simulated ultra-low-dose 18F-FDG
PET scan, the AI-augmented ultra-low-dose 18F-FDG PET
scan, and the 100% standard-dose 18F-FDG PET scan. The
measurement was obtained using MIM 6.5 (MIM Software,
Inc., Cleveland, OH, USA) as SUVmax = (tissue tracer activity
(mCi/g))/((injected dose (mCi)*patient body weight (kg))).
All metrics were compared across the ultra-low-dose 18F-
FDG PET scan, the AI-augmented ultra-low-dose 18F-FDG
PET scan, and the 100% standard-dose 18F-FDG PET images
using a Wilcoxon signed-rank test.

Statistical analysis

To evaluate the ability of the different scan types to provide
clinically relevant information, we compared imaging experts’
scan assessments with the ground truth of whether lesions
were present in each scan/region or not. The ground truth
was defined as the combination of all imaging scans and bi-
opsies obtained to generate a baseline diagnosis. This included
biopsy results of the primary tumor, ultrasound, x-rays, CT,
MR, 18F-FDG PET, and bone scans. By defining anatomical
areas, which are positive (contain tumor) or which are nega-
tive (do not contain tumor) through the ground truth, we cal-
culated the positive predictive value (PPV), negative predic-
tive value (NPV), and balanced accuracy (average of sensitiv-
ity and specificity). We reported the balanced accuracy be-
cause the unbalanced accuracy statistic is very sensitive to
the proportion of true positive (contain tumor) and true nega-
tive cases (do not contain tumor) in any scan sample with
limited sample size. The balanced accuracy estimates are often
more stable and more comparable between different studies.

All PPV, NPV, and balanced accuracy estimates were calcu-
lated using the confusionMatrix() function from R package
caret. To evaluate the degree of agreement in Likert scale
assessments between the 100% standard-dose PET scan and
the other 2 scan types, we calculated weighted kappa statistics
(using both linear weights and quadratic weights). All kappa
estimates were generated using the kappa2() function from R
package irr. The Wilcoxon signed-rank test was used to com-
pare all image quality metrics and SUV values that are paired
between scan types.

Results

CNN reduces image noise of simulated ultra-low-dose
PET scans

Figure 2 and Table 1 show the qualitative and quantitative
results of the reconstruction model. A major problem of re-
ducing radiotracer doses for 18F-FDG PET scans was an in-
creased image noise [16]. The CNN-augmented ultra-low-
dose 18F-FDG PET images demonstrated significantly less
noise and better image quality compared to simulated 6.25%
dose 18F-FDG PET images, measured by PSNR, SSIM, and
NRMSE. PSNR and SSIM were significantly higher, and
NRMSE was significantly lower on the CNN-augmented
ultra-low-dose 18F-FDG PET as opposed to simulated
6.25% dose 18F-FDG PET images (all pair-wise t-tests p <
0.001; Table 1). In addition, the standard deviation of the
mean standardized uptake value (SUV) measurements of the
liver and mediastinal blood pool was significantly lower on
the CNN-augmented ultra-low-dose 18F-FDG PET images
compared to simulated 6.25% dose 18F-FDG PET images
(Table 3 and Supplementary Figure 4). These qualitative and
quantitative results show that the proposed CNN model re-
duces image noise of the ultra-low-dose 18F-FDG PET scans
and reaches an overall image quality on CNN-augmented 18F-
FDG PET images, which are similar to 100% dose 18F-FDG
PET scans.

Combining MRI and PET improves reconstruction
quality

Supplementary Figure 1 shows the qualitative and quantitative
performance of our CNN with and without additional MRI
inputs. The CNN that predicts the standard-dose 18F-FDG
PET with the least error is the CNN trained on both contrast-
enhanced MRI and simulated ultra-low-dose 18F-FDG PET
images, which demonstrates the benefit of including the
MRI modality. The simultaneous 18F-FDG PET and MRI
acquisition mode facilitates the integration of input data from
the twomodalities. TheMRI images provided complementary
anatomical information for depicting detailed high-resolution
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features that could be missed if only the simulated ultra-low-
dose 18F-FDG PET images were used as input.

Attention-weighted loss boosts performance

Supplementary Figure 2 shows the performance comparison
of two models – one with the attention-weighted loss function
and one with a traditional mean-square-error (MSE) loss func-
tion. The attention-weighted loss function demonstrated a ten-
dency to boost the performance of the CNN.

AI-reconstructed PET scans enable accurate tumor
detection

Figure 3, Supplementary Figure 3, and Table 2 show the qual-
itative and quantitative results in terms of image diagnostic qual-
ity. Since pediatric tumors are highly metabolically active, there
were only small differences in the clinical experts’ ability to
detect tumor lesions on the different imaging scans: The clinical
experts detected 225 of 249 tumors on the 100% dose 18F-FDG
PET scan, 221 tumors on the simulated ultra-low-dose 18F-FDG
PET scan, and 223 tumors on the AI-augmented ultra-low-dose

Table 1 Comparison of image
quality metrics for simulated
6.25% ultra-low-dose 18F-FDG
PET and AI-reconstructed 18F-
FDG PET scans

6.25% ultra-low-dose PET

(N =23)

AI-reconstructed PET

(N =23)

P value*

PSNR

Mean (SD) 51.6 (8.50) 55.6 (7.62) <0.001

Median (Q1, Q3) 53.6 (43.9, 59.3) 58.1 (48.8, 62.3)

SSIM

Mean (SD) 0.925 (0.0449) 0.967 (0.0175) <0.001

Median (Q1, Q3) 0.929 (0.916, 0.957) 0.972 (0.961, 0.978)

NRMSE

Mean (SD) 0.257 (0.102) 0.158 (0.0453) <0.001

Median (Q1, Q3) 0.228 (0.182, 0.305) 0.156 (0.127, 0.191)

*The AI-reconstructed 18 F-FDG PET scan demonstrates improved image quality and significantly less noise for
all three metrics compared to the ultra-low dose 18 F-FDG PET scan: higher peak signal-to-noise ratio (PSNR),
higher structural similarity index (SSIM) and lower normalized root-mean-square error (NRMSE), n = 23 scans
per group, Wilcoxon signed-rank tests. P-values were calculated using Wilcoxon signed-rank test

b dca

CNN

Standard-dose PET 6.25% ultra-low-dose PET (0.1-0.2 mSv) AI-reconstructed PETLAVA MRI

Fig. 2 Representative 18F-FDG PET/MRI scan of a 16-year-old female
patient with Hodgkin lymphoma (HL). a Coronal contrast-enhanced T1-
weighted LAVA (liver acquisition and volume acquisition) MRI, b cor-
onal view of a standard-dose 18F-FDG dose PET scan (3 mBq/kg), c
simulated ultra-low-dose PET scan at 6.25% 18F-FDG dose, and d the
AI-reconstructed ultra-low-dose 18F-FDG PET image, reconstructed

based on the 6.25% ultra-low dose PET and MRI scans as combined
inputs. The red arrows point to the hypermetabolic tumors in the medias-
tinum. Additional hypermetabolic tumors are noted at the right hilum and
left lower neck (yellow arrows). All lesions can be detected on all scans,
but tumor-to-background contrast and confidence for lesion detection is
improved on the AI-reconstructed 18F-FDG PET
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18F-FDG PET scans. Most lesions were noted on all scans.
Sensitivities, specificities, and diagnostic accuracies were not
significantly different for the three imaging modalities
(Supplementary Table 2).

However, the confidence of the readers regarding the presence
or absence of tumor lesions in specific anatomical regions, as
measured by a Likert scale, was significantly different between
the different scans. The readers demonstrated a significantly low-
er confidence in the detection of lesions on 6.25% dose scans as
opposed to on the AI-augmented ultra-low-dose 18F-FDG PET
scans and the 100% dose 18F-FDG PET scans. The 100% dose
18F-FDG PET scans demonstrated significantly higher agree-
ment with theAI-augmented ultra-low-dose 18F-FDGPET scans
(kappa = 0.942) than the 6.25%dose 18F-FDGPET scans (kappa
= 0.650). This also applied when considering tumors in different
anatomical regions: The 100% dose 18F-FDG PET scans dem-
onstrated significantly higher agreement with the AI-augmented
ultra-low-dose 18F-FDG PET scans for tumor detection in the
lymph nodes (kappa = 0.955), visceral organs (kappa = 0.910),
and bone marrow (kappa = 0.828) compared to corresponding
results of the simulated ultra-low-dose 18F-FDG PET scan for
tumor detection in the lymph nodes (kappa = 0.702), visceral
organs (kappa = 0.573), and bone marrow (kappa = 0.278).

AI-reconstructed PET provides accurate quantitative
tumor SUV measurements

Compared to the 100% dose 18F-FDG PET scans, SUVmax

values of tumors, liver, and mediastinal blood pool were sig-
nificantly higher on the simulated 6.25% ultra-low-dose PET
scans as a result of added image noise. On AI-augmented
ultra-low-dose 18F-FDG PET scans, the SUVmax values were
recovered to values that were similar to the standard-dose PET
(Table 3 and Supplementary Figure 4).

Tumor SUV values are often compared to SUVmean values
of liver and mediastinal blood pool as an internal standard of
reference. Compared to 100% dose 18F-FDG PET scans, liver
SUVmean and mediastinal blood pool SUVmean values were
higher on 6.25% dose 18F-FDG PET scans (p=0.028 and
0.036, respectively), but were not significantly different on
the AI-augmented ultra-low-dose 18F-FDG PET scans
(p=0.523 and 0.316, respectively).

The CNN model generalizes in independent data

Next, we evaluated the model’s generalization by examining
how the model performs when it augments reduced-dose 18F-
FDG PET images from PET studies at another institution
(Tübingen). We applied our CNN to PET scans of 11 addi-
tional subjects. The qualitative and quantitative reconstruction
results are shown in Supplementary Tables 3–5 and
Supplementary Figure 5. The image quality was significantly
improved on AI-augmented ultra-low-dose 18F-FDG PET

scans as opposed to the original simulated reduced-dose
PET images by 3.7 dB in PSNR, 2.8% in SSIM, and 12.6%
in NRMSE, which demonstrates good model generalization
across data from different institutions. This is particularly
noteworthy as the two institutions used different scanners
from different vendors.

When comparing quantitative SUV measurements, we
found significantly higher tumor SUVmax in the reduced-
dose PET group, compared to 100% dose group (p = 0.008).
The CNN effectively corrected this discrepancy: Tumor
SUVmax measures on AI-augmented ultra-low-dose 18F-
FDG PET scans were not significantly different compared to
the 100% dose scans (p = 0.518). The liver SUVmean was not
significantly different between reduced-dose and 100% dose
PET scans (p = 0.412) or AI-augmented and 100% dose PET
scans (p = 0.270). However, the standard deviation of the liver
SUV (SUVstd), a quantitative measure of image noise, was
significantly higher on reduced-dose PET scans compared to
100% dose PET scans(p < 0.001), while there was no signif-
icant difference of liver SUVstd between AI-augmented and
100% dose PET scans (p = 0.818).

Similar to results of the first cohort, the readers showed
significantly lower confidence in the detection of lesions on
6.25% dose scans as opposed to AI-augmented ultra-low-dose
18F-FDG PET scans and the 100% dose 18F-FDG PET scans.
The 100% dose 18F-FDG PET scans demonstrated signifi-
cantly higher agreement with the AI-augmented ultra-low-

Table 2 Agreement between expert reviewer tumor diagnoses on 100%
standard-dose 18F-FDG PET and simulated 6.25% ultra-low-dose 18F-
FDG PET and AI-reconstructed 18F-FDG PET scan

Procedure Weighted kappa
(Linear)

Weighted kappa
(Quadratic)

Lymph nodes

6.25% ultra-low-dose 0.702 0.859

AI-reconstructed PET 0.955 0.984

Extralymphatic

6.25% ultra-low-dose 0.573 0.765

AI-reconstructed PET 0.910 0.965

Bone marrow

6.25% ultra-low-dose 0.278 0.444

AI-reconstructed PET 0.828 0.916

Whole body

6.25% ultra-low-dose 0.650 0.820

AI-reconstructed PET 0.942 0.977

Three expert reviewers determined the presence or absence of tumor
lesions in 20 anatomical regions per patient according to a Likert scale
(1 – tumor definitely not present, 2 – tumor probably not present, 3 –
undecided, 4 – tumor probably present, 5 – tumor definitely present). The
agreement between 100% standard-dose PET images and 6.25% ultra-
low-dose 18 F-FDG PET and AI-reconstructed 18 F-FDG PET scans was
calculated with weighted kappa estimates
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b c da

LAVA MRI

Fig. 3 Illustration of image quality improvement in terms of tumor
delineation on the AI-reconstructed 18F-FDG PET scan. Representative
18F-FDG PET/MRI scan of a 10-year-old male patient with diffuse large
B-cell lymphoma (DLBCL). a Axial T1-weighted contrast-enhanced
LAVA MRI; b axial standard-dose 18F-FDG PET scan (upper panel),
fused with T1-weighted MRI (lower panel); c axial simulated 6.25%

ultra-low-dose 18F-FDG PET scan, fused with T1-weighted MRI; and
d axial AI-reconstructed 18F-FDG PET image, fused with T1-weighted
MRI. The arrows point to a tumor in the pancreas. The tumor can be well
depicted in the original 100% dose 18F-FDG PET scan and the AI-
reconstructed 18F-FDG PET, but is nearly invisible on the 6.25% dose
18F-FDG PET scan

Table 3 Standardized uptake
values (SUV), as measured on
100% standard-dose 18F-FDG
PET, simulated 6.25% ultra-low-
dose 18F-FDG PET, and AI-
reconstructed 18F-FDG PET
scans.

100% standard-dose PET 6.25% ultra-low-dose PET AI-reconstructed PET

Liver

SUV_max

Mean (SD) 2.65 (1.12) 5.87 (2.44) 2.92 (1.06)

Median (Q1, Q3) 2.47 (2.19, 2.69) 5.49 (4.79, 6.23) 2.71 (2.46, 2.97)

SUV_mean

Mean (SD) 1.89 (0.817) 1.98 (0.866) 1.90 (0.852)

Median [Q1, Q3] 1.80 (1.54, 1.94) 1.78 (1.56, 1.96) 1.73 (1.48, 1.91)

SUV_std

Mean (SD) 0.216 (0.0826) 0.774 (0.277) 0.270 (0.0894)

Median [Q1, Q3] 0.200 (0.170, 0.240) 0.710 (0.670, 0.845) 0.250 (0.225, 0.300)

Mediastinal Blood Pool

SUV_max

Mean (SD) 2.44 (1.13) 5.11 (2.55) 2.60(1.21)

Median [Q1, Q3] 2.22 (1.68, 2.68) 4.22 (3.29, 6.40) 2.44 (1.77, 2.97)

SUV_mean

Mean (SD) 1.53 (0.863) 1.61 (0.809) 1.59 (0.794)

Median [Q1, Q3] 1.25 (1.02, 1.67) 1.38 (1.12, 1.82) 1.47 (1.08, 1.70)

SUV_std

Mean (SD) 0.237 (0.0951) 0.690 (0.316) 0.262 (0.119)

Median [Q1, Q3] 0.220 (0.175, 0.275) 0.580 (0.445, 0.905) 0.240 (0.180, 0.330)

Tumor

SUV_max

Mean (SD) 11.9 (6.44) 15.0 (7.19) 10.6 (5.95)

Median [Q1, Q3] 11.6 (7.14, 15.4) 14.2 (9.92, 18.8) 9.77 (6.29, 13.8)

SUV_mean

Mean (SD) 3.87 (2.33) 3.79 (2.23) 3.63 (2.24)

Median [Q1, Q3] 3.17 (2.32, 5.39) 3.24 (2.37, 4.94) 2.90 (2.23, 4.96)

Data represent mean and median SUVmax, SUVmean, and SUVstd values of representative tumors, liver, and
mediastinal blood pool
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dose 18F-FDG PET scans (kappa = 0.912) than the 6.25%
dose 18F-FDG PET scans (kappa = 0.834).

Discussion

Our data show that our CNN model could generate 18F-FDG
PET images of the whole body from ultra-low-dose 18F-FDG
PET inputs while maintaining clinically relevant information
in terms of diagnostic accuracy and quantitative SUV mea-
surements. Reducing the exposure to ionizing radiation from
medical imaging procedures is important to minimize a poten-
tial risk of secondary cancer development later in life [4, 5,
12]. Our CNN concept takes advantage of simultaneous 18F-
FDG PET and MRI data acquisitions and could substantially
advance the development of safer imaging tests for pediatric
patients. We found that the inclusion of MRI data in addition
to 18F-FDG PET images in the CNN model improves the
depiction of anatomical detail in PET reconstruction. The ra-
tionale for this is that the MRI data provides detailed anatomic
information that helps the CNN improve spatial detail in the
reconstructed images. In addition, incorporation of attention-
weighted loss into our model emphasizes the high-diagnostic-
value regions on medical images, which further boosts the
model performance. While several other investigators utilized
MRI data to augment low-dose 18F-FDG PET images of the
brain [19, 20, 22], we applied this concept to whole-body 18F-
FDG PET images of children and young adults.

Most prior PET low-dose reconstruction work focused on
the brain. Previous studies [22, 27] showed that a low-dose
PET scan of the brain can be obtained by combining 75% dose
accelerated PET scans with T1-weighted MRI images as in-
puts to a CNN model to predict standard-dose brain PET im-
ages. Besides CNN, other frequently used neural network
models in brain PET reconstruction are generative adversarial
networks (GANs) [28, 29], where the generator part of a GAN
learns to create synthetic images with the goal of fooling the
discriminator, which is designed particularly to distinguish
between real and synthetic images. Furthermore, several other
attempts have focused on dose reduction below 10% [23, 30,
31]. Chen et al. used ultra-low-dose brain PET images and
MRI sequences as inputs to create AI-augmented PET scans
of the brain [32]. However, brain image reconstruction is fun-
damentally different from whole-body image reconstruction,
which is a much more challenging task due to its much more
variable anatomical detail. Two recent works focused on
whole-body PET image reconstruction [33, 34]. A residual
CNN was proposed to reconstruct full-dose PET images from
10% low-dose counterparts [33]. However, the research was
conducted on only two whole-body scans, which largely
limits the generalizability of the developed model. In addition,
the model was not tested with regard to its ability to render
clinical diagnoses. The second proposed scheme was built

upon 50% low-dose images, which save substantially less
ionizing radiation than provided by our CNN model [34].

There are several limitations of our study. Some small
lymph nodes can be less well delineated on the AI-
reconstructed PET compared to the original standard-dose
PET. In Supplementary Figure 6, we can see that sub-
centimeter hypermetabolic lymph nodes are better delineated
on the AI-augmented scan than on the 6% dose scan. The AI-
augmented scan does not discriminate each individual lesion
as well as the original 100% standard-dose scan. This techni-
cal limitation will be addressed with further improvements of
our algorithm. The limitation of FDG-PET for the detection of
sub-centimeter lesions is a well-described problem not only
for our studies but for the field in general. Another limitation is
the need for simultaneously acquired MRI. There might be
situations where only PET images are present or if the PET
and MRI data are acquired separately on different scanners. It
is worth noting that the proposed model could potentially be
applied in a PET/CT scenario where the CT provides the an-
atomical information for PET reconstruction. While this ap-
proach would not save irradiation, it could be used to save
time by acquiring ultra-fast PET scans and augmenting them
with CT data. Related problems due to sequential rather than
simultaneous PET and CT data acquisition would have to be
investigated. Meanwhile, hallucination signals could be intro-
duced during reconstruction due to the lack of performance
guarantee in deep learning models.

Conclusion

We have demonstrated that high-quality 18F-FDG PET im-
ages can be reconstructed from ultra-low-dose inputs using a
new CNN that includes the simultaneously acquired MRI
data in addition to PET data. The AI-augmented ultra-low-
dose 18F-FDG PET images maintain clinically relevant infor-
mation in terms of diagnostic accuracy, diagnostic confidence,
and quantitative SUV measurements.
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