
Vol.:(0123456789)1 3

European Journal of Nuclear Medicine and Molecular Imaging 
https://doi.org/10.1007/s00259-022-06097-w

ORIGINAL ARTICLE

Low‑count whole‑body PET/MRI restoration: an evaluation of dose 
reduction spectrum and five state‑of‑the‑art artificial intelligence 
models

Yan‑Ran (Joyce) Wang1,2 · Pengcheng Wang3 · Lisa Christine Adams1 · Natasha Diba Sheybani2 · Liangqiong Qu2 · 
Amir Hossein Sarrami1 · Ashok Joseph Theruvath1 · Sergios Gatidis4 · Tina Ho1 · Quan Zhou1 · Allison Pribnow5 · 
Avnesh S. Thakor5 · Daniel Rubin2,5 · Heike E. Daldrup‑Link1,5

Received: 26 July 2022 / Accepted: 24 December 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Purpose To provide a holistic and complete comparison of the five most advanced AI models in the augmentation of low-
dose 18F-FDG PET data over the entire dose reduction spectrum.
Methods In this multicenter study, five AI models were investigated for restoring low-count whole-body PET/MRI, cover-
ing convolutional benchmarks — U-Net, enhanced deep super-resolution network (EDSR), generative adversarial network 
(GAN) — and the most cutting-edge image reconstruction transformer models in computer vision to date — Swin transformer 
image restoration network (SwinIR) and EDSR-ViT (vision transformer). The models were evaluated against six groups of 
count levels representing the simulated 75%, 50%, 25%, 12.5%, 6.25%, and 1% (extremely ultra-low-count) of the clinical 
standard 3 MBq/kg 18F-FDG dose. The comparisons were performed upon two independent cohorts — (1) a primary cohort 
from Stanford University and (2) a cross-continental external validation cohort from Tübingen University — in order to 
ensure the findings are generalizable. A total of 476 original count and simulated low-count whole-body PET/MRI scans 
were incorporated into this analysis.
Results For low-count PET restoration on the primary cohort, the mean structural similarity index (SSIM) scores for dose 
6.25% were 0.898 (95% CI, 0.887–0.910) for EDSR, 0.893 (0.881–0.905) for EDSR-ViT, 0.873 (0.859–0.887) for GAN, 0.885 
(0.873–0.898) for U-Net, and 0.910 (0.900–0.920) for SwinIR. In continuation, SwinIR and U-Net’s performances were also 
discreetly evaluated at each simulated radiotracer dose levels. Using the primary Stanford cohort, the mean diagnostic image 
quality (DIQ; 5-point Likert scale) scores of SwinIR restoration were 5 (SD, 0) for dose 75%, 4.50 (0.535) for dose 50%, 
3.75 (0.463) for dose 25%, 3.25 (0.463) for dose 12.5%, 4 (0.926) for dose 6.25%, and 2.5 (0.534) for dose 1%.
Conclusion Compared to low-count PET images, with near-to or nondiagnostic images at higher dose reduction levels (up 
to 6.25%), both SwinIR and U-Net significantly improve the diagnostic quality of PET images. A radiotracer dose reduction 
to 1% of the current clinical standard radiotracer dose is out of scope for current AI techniques.
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Introduction

The use of artificial intelligence (AI) technology for medical 
image restoration has accelerated rapidly in the past decade. 
AI-powered deep learning neural networks are increasingly 
being used to augment low-count medical images, such as 
those acquired by positron emission tomography (PET) [1]. 
PET has been considered as the gold standard for staging 
and treatment monitoring of patients with solid cancers 
[2–4]. However, the disadvantages of PET imaging as com-
pared to magnetic resonance imaging (MRI) are its high 
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cost and ionizing radiation exposure [5–7]. Reductions in 
radiotracer dosage could minimize radiation exposure, and 
reductions in scan time could enhance patient throughput 
and reduce scan costs. However, reductions in radiotracer 
dosage and scan times lower the detection of PET annihila-
tion events, resulting in low-count PET scans with reduced 
diagnostic image quality (DIQ) [8]. Based on a comprehen-
sive literature review, the restoration of a standard full-count 
PET imaging from this reduced DIQ cannot be achieved by 
simple postprocessing operations such as denoising, since 
lowering the number of coincidence events in the PET detec-
tor introduces both noise and local uptake value changes [9]. 
Hence, sophisticated AI-powered deep learning techniques 
for image restoration became increasingly more popularized 
to facilitate PET image restoration [10–12].

Multiple AI models have emerged in recent years to 
enhance low-count PET scans [13–15], with some convo-
lutional neural network (CNN) methods approved by the 
U.S. Food and Drug Administration (FDA) [16]. However, 
the FDA does not recommend which specific FDA-approved 
software should be used for a given medical problem. Most 
available AI-powered PET restoration publications feature 
a single AI model. As such, the literature currently lacks an 
unbiased, systematic evaluation comparing multiple state-
of-the-art AI models in this context. Moreover, the rapid 
rate of progress in AI and deep learning research has given 
way to transformer-based models with innate global self-
attention mechanisms capable of outperforming CNN-based 
benchmarks in a variety of imaging-related tasks including 
image reconstruction [17–20]. To our knowledge, transform-
ers have not yet been well-adapted and utilized for whole-
body PET restoration, nor have they been directly compared 
against the state-of-the-art CNNs. Thus, we herein seek to 
fulfill an unmet need by performing a comprehensive com-
parison of state-of-the-art AI models for low-count whole-
body (WB) PET imaging restoration.

Reducing the 18F-FDG dose increases image artifacts, 
because the image quality is proportional to the number of 
coincidence events in the PET detector following radiop-
harmaceutical positron annihilation [1]. Such significant 
artifacts and noise introduce challenges for the recovery of 
true radiotracer signal by AI models. Three recent studies 
have explored AI-based augmentation in WB PET images 
at 50% [16, 21], 25% [1], and 6.25% [22] of the clinical 
standard doses. To date, few efforts have been reported on 
conducting a comprehensive assessment across the dosage 
reduction spectrum [16]. There is also a lack of PET data-
bases containing list-mode data that can be used to generate 
a wide array of dose-reduced images for direct comparison 
[23]. A key question that has not yet been addressed in low-
count PET image augmentation is that of model limitation 
(i.e., what is the lowest reduction percentage that a given AI 
model can enhance with acceptable clinical utility).

To close the gaps on the aforementioned challenges, our 
study aimed to compare five different AI models in the aug-
mentation of low-dose 18F-FDG PET data. Using two cross-
continental independent PET/MRI datasets, we examined six 
PET dose level percentages ranging from 75 to 1% against 
the five most advanced models — spanning the CNN and 
transformer categories. The five models include three CNN 
benchmarks: U-Net [24], enhanced deep super-resolution 
network EDSR [22], generative adversarial network (GAN) 
[25], and two transformer models: SwinIR [17] and EDSR-
ViT [18]. Notably, the recent advancement — Swin trans-
former — was leveraged for whole-body PET restoration for 
the first time in this study.

To integrate these AI-powered low-count PET restora-
tions in a clinical setting, a comprehensive investigation is 
critical. Hence, we considered different anatomical regions 
for the training of our model, which has been underexplored 
in previous studies. This study is pertinent for implementers 
developing AI models optimized for achieving PET imag-
ing that preserves the best image quality with the lowest 
possible radiation exposure to patients. To promote the con-
tinued advancement of this domain, we have open-sourced 
the code underpinning the five AI models tailored for PET/
MRI restoration.

Materials and methods

Participants and dose reduction spectrum

In this multicenter, restrospective evaluation of data from the 
Health Insurance Portability and Accountability (HIPAA)-
compliant clinical trials, two participating centers (Univer-
sity of Tübingen, Germany, and Stanford University, CA, 
USA) obtained approval from their institutional review 
board (IRB). Written informed consent was obtained from 
all adult patients and parents of pediatric patients. Stanford 
cohort: Between July 2015 and June 2019, we collected 48 
whole-body PET/MRI scans (Supplementary pp 1–2) from 
22 children and young adults (13 females, 9 males) with 
lymphoma and a mean age (standard deviation; range) of 
17 years (7; 6–30 years). Tumor histology consisted of 14 
patients with Hodgkin lymphoma, six with non-Hodgkin 
lymphoma, and two patients with posttransplant lymphopro-
liferative disorder (PTLD). Tübingen cohort: 20 whole-body 
PET/MRI scans (Supplementary pp 1–2) from 10 patients 
(5 females, 5 males) with a mean age (standard deviation; 
range) of 14 years (5; 3–18 years) were collected. The dis-
tribution of tumor histologies was eight with Hodgkin lym-
phoma and two with non-Hodgkin lymphoma.

Radiotracer input data were used to generate images. 
Full-dose (3  MBq/kg) PET data were acquired in list 
mode, which helps detect coincidence events across the 
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entire duration of the PET bed time (3 min 30 s). Low-dose 
PET images were retrospectively simulated by unlisting 
the PET list-mode data and reconstructing them based on 
the percentage of coincidence events [26]. List-mode PET 
input data were collected over time periods: the first block 
of 3 min 30 s, 2 min 38 s, 1 min 45 s, 53 s, 26 s, 13 s, 
and 2 s. These were used to simulate 100%, 75%, 50%, 
25%, 12.5%, 6.25%, and 1% 18F-FDG PET dose levels, 
respectively. This resulted in 476 original count standard-
dose and simulated low-count PET/MRI images (336 from 
the Stanford cohort and 140 from the Tübingen cohort) 
included in this study.

Study design

Five different AI models were trained and tested separately 
over six dose reduction percentages ranging from 75 to 
1% (of the clinical standard-dose) on the primary Stanford 
PET/MRI images. This resulted in 30 AI models in total. 
All of the 30 AI models were further tested on the Tübin-
gen external validation cohort. The Tübingen cohort was 
not included in the training of each model, making it a true 
external test set. The same image pre-processing steps (Sup-
plementary p 2) were applied to all PET/MRI images from 
each cohort. Using an approach which aimed to alleviate 
additional burden on the network learning methods to find 
patterns between images for final restoration, the top 0.1% 
of the pixels in PET images were clipped, i.e., the intensity 
values of the top 0.1% pixels were mapped to the intensity 
of the top 0.1% pixel. This operation was critical for model 
convergence and training stability, as these pixels possessed 
high noise and were therefore outliers of the distribution.

The 3D whole-body volume was predicted in a slice-
by-slice fashion and the predicted 2D slices were stacked 
together to reconstruct the final 3D PET prediction. We 
adopted 2.5D input scheme to ensure vertical spatial con-
sistency. Five consecutive axial slices from both PET and 
MRI modalities were fed into the model as combined inputs, 
resulting in ten input slices in total for one evaluation. Five-
fold cross-validation was applied to ensure generalization 
in model performance. A combination of mean square error 
(MSE) and the structural similarity index measure (SSIM) 
loss was used to train the model (Supplementary pp 2–3).

Five AI models evaluated

The framework illustrating the five AI models in low-count 
PET restoration is shown in Fig. 1. We investigated three 
CNN benchmarks (U-Net, EDSR, and GAN) and two trans-
former models (EDSR-ViT and SwinIR). Below, we detailed 
the models and their advantages.

U‑Net

Proposed in 2015 [24], the U-Net was first invented for 
biomedical image segmentation and has rapidly become 
the most well-recognized and classic AI model in the 
medical imaging community. Previous studies [1, 16] 
have utilized U-Net in low-count PET restoration. The 
name “U-Net” borrows intuitively from the U-shaped 
structure of the model diagram, as shown in Fig. 1a. It 
consists of (1) the left side encoder, where convolution 
layers intercalate with max-pooling layers that gradually 
reduce the dimensions of the image, and (2) the right side 
decoder, where a set of convolution operations and upscal-
ing brings the feature map back to the original dimensions. 
This architecture is well-suited for middle-level segmenta-
tion tasks, as the semantic information extracted from the 
encoder, along with the spatial information kept from the 
skip connection and decoder, provides almost everything 
needed for semantic segmentation in biomedical images. 
The limitation of the classic U-Net model is that it can-
not sufficiently model the global and long-range semantic 
information due to the restriction of localized convolu-
tional operations [27, 28].

EDSR

Investigated on 6.25%-low-count PET/MRI restoration 
in 2021 [22], the adapted EDSR is inspired by the classic 
enhanced deep super-resolution network [29] model in com-
puter vision. The main innovation of EDSR is the organiza-
tion and optimization of the building block, with only two 
convolutions, a rectified linear unit (ReLU) activation in 
between, and an add residual — as shown in Fig. 1b. The 
unnecessary modules — batch normalization and follow-
up ReLU activation — in conventional residual networks, 
ResNet [30] and SRResNet [31], are removed.

GAN

First proposed in 2014 [32] and now widely used in image 
generation, GANs originated from the notion of having 
two neural networks, a generator and a discriminator, pit-
ted against one other as adversaries in order to generate 
new, synthetic instances of data that can pass for real data 
(Fig. 1c); in short, the generator’s goal is to fool the system 
by trying to produce images that the discriminator cannot 
distinguish from real-world ones [33]. Several studies [25, 
34] have explored GANs in PET restoration. However, most 
of the superior performance has been achieved by introduc-
ing additional clinical data — e.g., amyloid status within the 
brain [25] — which are not always available in real practice.
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EDSR‑ViT

Originally designed for sequence-to-sequence prediction 
in natural language processing (NLP) [35], transformer 
applications had been expanded to image processing very 
recently and soon became a game-changing technique 
in computer vision [36]. As opposed to FCN, where the 
receptive fields are gradually expanded through a series 
of convolution operations, the self-attention operations 
inherited in transformers allow full coverage of the entire 
input space at the beginning, demonstrating exceptional 
representation power. Vision transformer (ViT) — a trans-
former adapted for image processing — has shown impres-
sive performance on high-level vision tasks [37, 38], but 
few efforts have been made to explore its role in image 
restoration. In order to examine its performance on PET/
MRI restoration, we tailored the original ViT by adding 
an EDSR CNN encoder on top of the transformer block, as 
shown in Fig. 1d. The rationale for this is that the global 
long-range dependency from ViT and the precise localiza-
tion from CNN encoder are complimentary for low-level 
vision tasks [39].

SwinIR

Proposed in 2021 [17], SwinIR is among the pioneering 
efforts in transformer utilization for image restoration, 
showing surperior performance over a variety of state-of-
the-art methods spanning image super-resolution, image 
denoising, and JPEG compression artifact reduction. The 
highlight of SwinIR is the adoption of Swin transformer 
[19]. Swin transformer is a hierarchical transformer whose 
representation is computed with shifted windows, reducing 
the border artifacts in ViT — as ViT usually divides the 
input image into patches with fixed size (e.g., 48 ∗ 48 ). 
This brings greater efficiency by limiting self-attention 
computation to these local shifted windows and allow-
ing cross-window connection to capture global depend-
ency (Fig. 1e). According to a recent study [19], Swin 
transformer outperformed ViT in high-level tasks includ-
ing image classification, object detection, and semantic 
segmentation. In this study, we adopted the backbone 
of SwinIR [17], which consists of 24 Swin transformer 
blocks for PET restoration.
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Fig. 1  Schematic overviews of AI model frameworks for low-count 
PET reconstruction. a The classic U-Net model. b The adapted 
EDSR (enhanced deep super-resolution network) model. c The GAN 
(generative adversarial network) model. d The EDSR-ViT model. 
EDSR-ViT takes the feature encoder part from the adapted EDSR 
(b) directly, and makes use of the ViT (visual transformer) block to 
obtain global self-attention within the image. e The SwinIR model, 

consisting of Swin transformer blocks. The main difference of Swin 
transformer and ViT transformer is where the self-attention opera-
tion applies. For Swin transformer block, the self-attention is applied 
within each of the local windows, including the regular window parti-
tions (Layer l) and the following shifted windows (Layer l + 1, etc.). 
For ViT, the self-attention is applied within the global image, which 
is equally partitioned into fixed size patches
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Evaluation framework

We adopted three quantitative metrics to measure the qual-
ity of the restored PET images: SSIM (the structural simi-
larity index), PSNR (peak signal-to-noise ratio), and VIF 
(visual information fidelity). SSIM is the most widely used 
metric in radiology imaging reconstruction [40] (which 
are a combination of luminance, contrast, and structural 
comparison functions). Specifically, the SSIM score was 
derived by comparing the AI-restored PET to the original 
standard-dose PET sequences and quantifying similarity 
on a scale of 0 (no similarity) to 1 (perfect similarity). 
PSNR is most commonly used to measure the reconstruc-
tion quality of a lossy transformation [41]. The higher the 
PSNR, the better the degraded image has been restored to 
match the original image. SSIM and PSNR mainly focus 
on pixel-wise similarity; thus, we introduce VIF, which 
uses natural statistics models to evaluate psychovisual 
features of the human visual system [42]. The code for 
calculating the performance was written with Python using 
SciPy and Scikit-image toolkits (script; Supplementary 
p 3).

Two board-certified radiologists (with 6 and 10 years 
of experience) independently reviewed the standard-dose 
PET, low-count PET, and the AI-restored PET by SwinIR 
and U-Net (SwinIR and U-Net were chosen to represent 
the transformer and CNN family, respectively) across the 
whole dose reduction spectrum (75%, 50%, 25%, 12.5%, 
6.25%, and 1%). The subjects were anonymized and the 
order of the scans were randomized. The DIQ was assessed 
with 5-point Likert scale. The 5-point Likert scale for DIQ 
was 1. Nondiagnostic, 2. Poor, 3. Acceptable, 4. Good, and 
5. Excellent image quality. In addition, the radiologists 
rated the lesions in 8 anatomical regions including CNS 
(central nervous system), paraspinal, neck, arms, chest, 
abdomen, pelvis, and legs, and determined the false-posi-
tive and false-negative errors using the standard-dose PET 
as a reference for the evaluation.

To investigate the utility of AI-restored PET scans in 
providing quantitative measures of tumor metabolism 
required for clinical PET interpretations, we measured 
standardized uptake values (SUVs) for the tumors and 
used liver as an internal reference standard. SUVs are the 
most widely used metric in clinical oncologic imaging and 
play a germane role in assessing tumor glucose metabo-
lism on FDG-PET [43, 44]. The  SUVmax of target lesions 
and  SUVmax of liver were measured by placing separate 
three-dimensional volumes of interest over tumor lesions 
and the liver. SUVs were measured using OsiriX version 
12.5.1. (OsiriX software; Supplementary p 3). SUV values 
were calculated based on patient body weight and injected 
dose by using the equation in Supplementary p 3.

Statistical analysis

We used Wilcoxon signed-rank t test as implemented in R 
software (V4.0.3) to assess the significance of the differ-
ence between two models. The ratings of two radiologists 
were used to test the difference between the AI-restored 
PET images and the corresponding original low-count PET 
images using Wilcoxon signed-rank tests. We used a prede-
fined P < 0.01 for significance. The performance tables show 
the mean, standard deviation (SD), and the first (25%) and 
third (75%) quartiles of the data. The evaluation metrics are 
provided with two-sided 95% confidence intervals (CIs). All 
models were written in Python3, with model training and 
testing performed using the Pytorch package (version 1.10).

Results

Both baseline and follow-up WB PET/MRI scans of 32 chil-
dren and young adult lymphoma patients were collected and 
six dose levels (75%, 50%, 25%, 12.5%, 6.25%, and 1%) 
were simulated, resulting in 476 PET/MRI scans (336 from 
the primary Stanford cohort and 140 from the Tübingen 
external cohort). The cross-continental PET/MRI cohorts 
were used to examine the generalization of our findings. To 
the best of our knowledge, large pooled PET/MRI databases 
containing PET list-mode data amenable to simulate low-
dose PET for AI model evaluation do not exist. As such, our 
collected cohort is unique in that it is among the first PET/
MRI databases for AI-enabled dose reduction studies.

Five AI models on six dose reduction percentages

To provide a holistic comparison of the five AI models, all 
models were evaluated in the restoration of low-count whole-
body PET images at six reduction percentages (75%, 50%, 
25%, 12.5%, 6.25%, and 1% of the clinical standard 3 MBq/
kg 18F-FDG dose). The quantitative performance metrics 
of all AI models over the entire dose reduction spectrum 
are shown in Fig. 3. Model comparisons at doses 25% and 
12.5% revealed that SSIM scores were highest for SwinIR 
on the Stanford internal test set. At dose 6.25%, SSIM scores 
were highest for SwinIR and lowest for U-Net. Differences 
in SSIM score became apparent between models at dose 
6.25%, ranging from 0.883 (U-Net) to 0.914 (SwinIR). At 
dose 1%, SSIM scores were highest for SwinIR and U-Net, 
and lowest for EDSR and EDSR-ViT. Differences in SSIM 
score between models were the least appreciable at dose 1%, 
ranging from 0.842 (SwinIR and U-Net) to 0.848 (EDSR and 
EDSR-ViT). For the Tübingen cohort, SwinIR also achieved 
the best performance in the SSIM metric with doses below 
50% (Fig. 3). More detailed performance metrics for 6.25% 
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low-count PET restoration are shown in Table 1. Dose 6.25% 
was the lowest dosage with around 40 dB PSNR for the 
AI restoration and thereby became our dose of choice for 
further investigation. The systematic evaluation presented 
herein is rendered in summary form, with mean and median 
quantitative values over the fourfold cross-validations on the 
two cohorts of interest (Table 1). SwinIR achieved the best 
quantitative results, with the highest SSIM score of 0.910 
(95% CI 0.900–0.920), PSNR score of 39.9 (39.1–40.6), and 
VIF score of 0.485 (0.469–0.501) on the primary Stanford 
test set. It was also generalized to the external Tübingen 
test set with the highest SSIM score of 0.950 (0.942–0.958) 
and VIF score of 0.483 (0.464–0.502), demonstrating model 
generalization across different institutions and scanner types.

The qualitative comparisons between the five AI models 
on 6.25% low-count restoration are shown in Fig. 2. The 
PET images restored from the SwinIR model were superior 
in reflecting some of the underlying anatomic patterns of 
the tracer uptake (the basal ganglia; Fig. 2A) when com-
pared to the images generated from the other four models. 
Meanwhile, though lesions could be detected on all AI-
restored scans (Fig. 2B-D), lesion-to-background contrast 

and confidence for lesion detection were improved on 
SwinIR (Fig. 2C). Compared to the standard-dose 18F-FDG 
PET scans, the simulated 6.25% low-count PET images had 
significantly higher  SUVmax values of the liver as a result 
of increased image noise. All five AI models managed to 
recover  SUVmax values of the liver similar to the values in 
standard-dose PET, demonstrating good denoising capability 
(Supplementary Table 1). All tumors had SUV values above 
that of the liver on all AI-restored PET images. Table 2 
provides the comparison of five models in low-count PET 
restoration.

Restoration across the dose reduction spectrum

Next, we examine the AI-powered PET restoration 
through the lens of dose reduction spectrum. AI-restored 
PET images consistently achieved improved SSIM, VIF, 
and PSNR over original low-count PET images at dose 
25%, 12.5%, 6.25%, and 1% (Fig. 3). Among the six dose 
reduction percentages, the improvement from AI resto-
ration was largest at dose 6.25%. The average improve-
ment scores for the five AI models were 0.106 (95% CI 

Table 1  Performance metrics of five state-of-the-art AI models on 
6.25% low-count PET reconstruction. Measures of performance include 
structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), 
and visual information fidelity (VIF). Performance is based on the Stan-

ford primary cohort (32 scans from 21 patients; indicated by test) and the 
Tübingen external validation cohort (20 scans from 10 patients; indicated 
by external). Values in bold indicates the highest value. All comparisons 
are calculated with the ground truth standard-count PET images

All p-values, calculated using Wilcoxon signed-rank test between the AI-reconstructed PET and the low-count PET, are below 0.001

Model SSIMtest PSNRtest VIFtest SSIMexternal PSNRexternal VIFexternal

EDSR
  Mean (SD) 0.898 (0.033) 39.7 (2.37) 0.454 (0.048) 0.949 (0.020) 39.5 (1.14) 0.466 (0.041)
  Median (Q1, 

Q3)
0.908 (0.878, 

0.923)
40.3 (38.6, 41.3) 0.462 (0.415, 

0.481)
0.952 (0.931, 

0.966)
39.8 (38.8, 40.2) 0.478 (0.432, 0.501)

EDSR-ViT
  Mean (SD) 0.893 (0.035) 38.7 (1.83) 0.433 (0.051) 0.947 (0.021) 38.4 (1.00) 0.436 (0.042)
  Median (Q1, 

Q3)
0.901 (0.864, 

0.921)
38.9 (37.7, 39.9) 0.438 (0.399, 

0.457)
0.950 (0.925, 

0.964)
38.5 (38.0, 38.9) 0.449 (0.395, 0.475)

GAN
  Mean (SD) 0.873 (0.040) 37.4 (2.14) 0.417 (0.047) 0.939 (0.022) 35.7 (0.957) 0.427 (0.039)
  Median (Q1, 

Q3)
0.875 (0.845, 

0.912)
37.6 (36.2, 38.6) 0.420 (0.386, 

0.445)
0.939 (0.921, 

0.957)
35.7 (35.2, 36.1) 0.435 (0.385, 0.459)

U-Net
  Mean (SD) 0.885 (0.036) 39.1 (2.39) 0.442 (0.048) 0.947 (0.020) 39.6 (1.29) 0.454 (0.042)
  Median (Q1, 

Q3)
0.893 (0.859, 

0.919)
39.5 (38.1, 40.8) 0.447 (0.410, 

0.471)
0.951 (0.928, 

0.964)
39.8 (38.7, 40.4) 0.463 (0.413, 0.494)

SwinIR
  Mean (SD) 0.910 (0.029) 39.9 (2.26) 0.485 (0.046) 0.950 (0.019) 39.1 (1.08) 0.483 (0.043)
  Median (Q1, 

Q3)
0.918 (0.889, 

0.934)
40.3 (38.5, 41.5) 0.492 (0.453, 

0.516)
0.952 (0.933, 

0.966)
39.3 (38.5, 39.7) 0.491 (0.443, 0.524)

6.25% low-count PET
  Mean (SD) 0.786 (0.047) 35.0 (2.42) 0.263 (0.046) 0.735 (0.030) 34.9 (1.43) 0.257 (0.030)
  Median (Q1, 

Q3)
0.802 (0.749, 

0.816)
35.4 (33.4, 36.6) 0.261 (0.234, 

0.289)
0.730 (0.711, 

0.751)
35.1 (34.3, 35.1) 0.249 (0.230, 0.282)
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0.102–0.110) in SSIM, 3.97 dB (3.78–4.16) in PSNR, 
and 0.183 (0.178–0.188) in VIF on Stanford internal test 
cohort; 0.211 (0.208–0.215) in SSIM, 3.54 dB (3.20–3.88) 
in PSNR, and 0.196 (0.190–0.202) in VIF on Tübingen 
external test set. Pair-wise t-tests between the AI-restored 
PET images and the low-count PET images revealed 
p-values consistently less than 0.001, suggesting that all 
AI models possessed statistically significant capacities 
for restoration and generalization. Figure 4 provides the 
detailed qualitive PET image comparisons between differ-
ent dosages. With reduction in simulated radiotracer dose, 
PET images exhibited higher noise and information loss, 

leading to increased  SUVmax values in the liver and tumors 
(Fig. 4B). The AI models tested herein reduced artifacts 
for the low-count PET images and recovered the  SUVmax 
values of liver and tumors to values commensurate with 
those derived from standard-dose PET (Fig. 4C, D).

For doses 75% and 50%, there were discrepancies 
between quantitative metrics and visual appearances. All 
AI models have enhanced the 75% and 50% low-count 
PETs visually with reduced image noise (Fig. 4), but the 
improvements were not reflected quantitatively (Fig. 3). 
A possible explanation is that 75% and 50% low-count 
PET images are sufficiently similar to standard-dose 

Standard-count
(11.52 / 2.53)

SUVmax Tumor / SUVmax Liver

a

U-net
(0.909 / 0.470)

EDSR
(0.922 / 0.510)

SwinIR
(0.929 / 0.539)

EDSR-ViT
(0.912 / 0.461)

6.25% low-count
(0.814 / 0.277)

Standard-count
(SSIM / VIF)

GAN
(0.902 / 0.432)

U-net
(11.88 / 2.34)

EDSR
(10.24 / 2.50)

SwinIR
(10.48 / 2.44)

EDSR-ViT
(10.75 / 2.67)

6.25% low-count
(15.53 / 7.21)

Standard-count
(10.77 / 2.37)

SUVmax Tumor / SUVmax Liver

GAN
(12.10 / 3.17)

d

U-net
(2.70 / 2.28)

EDSR
(2.87 / 2.00)

SwinIR
(5.01 / 2.10)

EDSR-ViT
(2.68 / 2.45)

6.25% low-count
(6.16 / 8.82)

Standard-count
(7.74 / 2.53)

SUVmax Tumor / SUVmax Liver

GAN
(3.36 / 2.99)

c

b

U-net
(5.52 / 2.28)

EDSR
(6.77 / 2.00)

SwinIR
(7.65 / 2.10)

EDSR-ViT
(5.00 / 2.45)

6.25% low-count
(11.47 / 8.82)

GAN
(6.10 / 2.99)

Fig. 2  PET image comparison across five state-of-the-art AI models 
on 6.25% low-count PET reconstruction. A Representative 18F-FDG 
PET scan of a 29-year-old female patient with Hodgkin lymphoma 
(HL). The enlarged patches are shown on the second panel (yellow 
arrows: basal ganglia). The structural similarity index (SSIM) and 
visual information fidelity (VIF) metrics are presented under each 
PET image. B Representative 18F-FDG PET scan of a 14-year-old 
male patient with HL. The  SUVmax of the lesion (delineated by red 
circle) and liver for this patient are shown under each PET image. 
C The same patient as B. The small lesion (less than 1.5  cm3; 
5  mm <  width  < 10  mm; height  > 10  mm; red arrow) is enhanced 

by SwinIR with the lesion-to-liver contrast of  SUVmax retained. The 
lesions (black arrow) are also clearly depicted by SwinIR, in con-
trast with being blurred and mixed together by the other reconstruc-
tions. D Representative 18F-FDG PET scan of a 17-year-old female 
patient from the external Tübingen testing cohort. All AI models 
successfully denoise the 6.25% low-count images and provide simi-
lar diagnostic conspicuity of the lesion (red circle; red arrows) as the 
standard-dose PET, demonstrating the model is generalizable across 
different institutions for all AI models. SwinIR shows superiority in 
retaining lesion-to-liver contrast and structural fidelity
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PET. Their PSNR values are greater than the threshold 
— 40 dB — which corresponds to nearly undiscernable 
differences, and thus passes the considerations for good 
image quality [45, 46]. Therefore, the quantitative met-
rics might not be able to reasonably depict improvements 
above this threshold.

In general, the quantative metrics — SSIM, VIF, and 
PSNR — of both original low-count PET and AI-restored 
PET images decreased over the dose reduction spectrum. 
However, AI restorations (powered by SwinIR, EDSR, 
and EDSR-ViT) between doses 12.5% and 6.25% achieved 
similar performance in the three metrics (Fig. 3). This is 
partly owing to the smoothing effect of 6.25% low-count 
restoration (the liver area in SwinIR-6.25p; Fig. 4D). The 
AI models in 6.25% low-count restoration converged on 
an approach that smoothed particular regions with signifi-
cantly decreased noise.

From doses ranging from 6.25 to 1%, there was a 
steep drop (Fig. 3) in SSIM, PSNR, and VIF across both 
Stanford and Tübingen cohorts, indicating the challenge 
of extreme-low-count PET restoration. Indeed, AI res-
toration introduced hallucinated signals and erroneous 
upstaging in 1% low-count PET restoration (Fig. 4C, 
D; far right column). The extreme-low-count scenario 
degraded PET images with substantial artifacts and infor-
mation loss that were difficult for the current AI tech-
niques to handle without the incorporation of additional 
information. Supplementary Fig. 2 shows the whole-body 

PET restoration from the coronal view, across the dose 
reduction spectrum powered by SwinIR.

Model training strategy

Figure 5 demonstrates an interesting observation when 
training SwinIR in 6.25% low-count PET images. In epoch 
24, the trained model was able to reconstruct the shape 
and contrast of the basal ganglia in the brain, but failed to 
clearly depict a small lesion (less than 1.5  cm3) in the liver. 
Meanwhile in epoch 4, the brain structure was not well-
restored, but the diagnostic conspicuity of the small lesion 
was preserved. Our experiment suggested that the discrep-
ancies in restoration quality between different anatomical 
regions were agnostic to specific model architectures. The 
possible reasons may be twofold: (1) the commonly used 
loss functions — mean square loss (MSE loss) and the 
structural similarity index loss (SSIM loss) — were origi-
nally proposed for natural image reconstruction and not 
specifically designed for diagnostic radiology images, thus 
limiting their ability to guide model training for these spe-
cific clinical needs; and (2) whole-body PET images have 
large intra-patient uptake variation. The metabolic activi-
ties of the brain and bladder are greater than other anatomi-
cal locations, shown as hyperintensities in PET images. As 
the training progresses, the focus of model optimization 
can shift to these hyperintense regions easily, as they can 
possess larger absolute loss penality values; this can in 

Table 2  Comparions of five AI models in low-count PET reconstruc-
tion. The five advanced AI models are compared from nine perspectives. 
(1) Number of parameters of the model. M, million; (2) number of opera-
tions running the model. Gflops, one billion floating point operations; 

(3) time cost for training; (4) inference time for one low-count PET/MRI 
scan; (5) model category–convolutional neural network or transformer 
category; (6) model requirement for pre-training; (7) overall pros of the 
model; (8) overall cons of the model; (9) FDA approval status

Training is performed on 4 GeForce RTX 3090 GPUs; inferencing is performed on 4 GeForce GTX 1080 Ti GPUs

Criteria U-Net EDSR EDSR-ViT GAN SwinIR

Number of parameters 
(M)

17.27 0.94 19.03 28.44 7.78

Number of operations 
(Gflops)

40.38 63.34 51.72 42.66 504.48

Training time (min/
epoch)

7 4 4 9 129

Inference time (sec/
subject)

10 13 15 10 122

Model category CNN CNN ViT Transformer CNN Swin Transformer
Pretraining scheme None None ImageNet21k-ViT ImageNet-ResNet None
Pros of the model Stable Good performance Retain more texture 

details than EDSR
✗ Superior performance

Cons of the model ✗ Prone to over smooth 
image

Sensitive to training 
strategy

Difficult to train; addi-
tional clinical informa-
tion is needed

Huge number of 
operations

FDA-approved ✓ ✗ ✗ ✗ ✗
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turn cause over-smoothing of other relatively low-intensity 
regions (e.g., the liver).

Clinical diagnostic evaluation

Compared to the original low-count PET images, with 
near-to or nondiagnostic images at higher dose reduction 
levels, both SwinIR and U-Net can significantly improve 
the diagnostic quality of PET images (Table 3; Supple-
mentary Fig. 3). From the radiologists’ assessment, it 
became apparent that both SwinIR and U-Net were able 
to significantly reduce the number of false-negative/
false-positive lesions compared to the original low-count 
PET images (the overall rate of false negatives/false posi-
tives in Table 4).

When comparing SwinIR and U-Net, there was a 
total of 3 false-positive and 1 false-negative lesions for 

SwinIR and 3 false-positive lesions for U-Net, indicat-
ing a similar diagnostic performance for both models. 
There were more false-positive lesions for the U-Net 
architecture at 50% and 25% (3 false positives for U-Net 
compared to 1 false positive for SwinIR), while there 
were more false positives for SwinIR at 12.5% and 6.25% 
(2 false positives versus 0 false positives). Even though 
the 6.25% simulation shows a notable increase in image 
quality with smoothed organ borders for SwinIR with 
minimal noise (Fig. 4), some original image informa-
tion is lost through the strong smoothing effect, which 
is underscored by the presence of a false-positive lesion 
in contrast to the U-Net. The occurrence of this false-
positive finding may have been favored by the fact that 
SwinIR image quality at the 6.25% level appears visually 
high with minimal noise, which carries a certain risk of 
false diagnostic confidence.

Fig. 3  Quantitative metrics over the dose reduction spectrum. The 
five AI models were adapted for the low-count PET reconstruction 
task. The AI models were trained on 75%, 50%, 25%, 12.5%, 6.25%, 
and 1% of the clinical standard 18F-FDG dose PET/MRI images 
from the primary Stanford cohort. One round of cross-validation was 
adopted. The trained models were then evaluated on the correspond-
ing low-count PET/MRI test set. The performance on the Stanford 
internal test set is shown on the top panel, and the performance on the 

external Tubingen test cohort is shown on the bottom panel. Meas-
ures of performance include structural similarity index (SSIM), peak 
signal-to-noise ratio (PSNR), and visual information fidelity (VIF). 
For all three metrics, higher represents better reconstruction. All 
comparisons are made against the ground-truth standard-count PET 
images. The blue line presents the original low-count PET images 
without AI enhancement and serves as the baseline for direct com-
parisons
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Overall, there was no noticeable difference in diag-
nostic performance between SwinIR and U-Net. For both 
architectures, some image information was lost at higher 
dose reduction levels, e.g., loss of myocardial uptake 
or decreased definition of the spine or the ribs (Fig. 4; 
Supplementary Fig. 2). While diagnostic image quality 
(DIQ) was slightly higher for SwinIR compared to U-Net, 
especially at 6.25%, this did not lead to significant dif-
ferences in lesion detection rates. The assessment of the 
radiologists adds to the information from SSIM, PSNR, 
and VIF metrics, confirming that both SwinIR and U-Net 
bring a significant gain in diagnostic image quality com-
pared to the original low-count PET, with comparable 
improvement of lesion detection (false negatives/posi-
tives). Including the information from SSIM, PSNR, and 
VIF metrics in the assessment (Table 1), SwinIR might 

possibly have a slight advantage over U-Net, even though 
this did not result in a significant difference in diagnostic 
performance for specialist-based lesion assessment.

Discussion

In this study, we provide the first unbiased and comprehen-
sive investigation of AI-enabled low-count whole-body PET 
restoration from two perspectives: the restoration models 
and the dose reduction percentages. Six reduction percent-
ages covering the entire dose spectrum — 75%, 50%, 25%, 
12.5%, 6.25%, and 1% (extreme low count) of the clini-
cal standard 18F-FDG dose — were investigated. In addi-
tion, we adapted five state-of-the-art AI models for this 
task, including the classic CNN benchmarks and the most 

100% standard-dose PET
SUVmax (Tumor#1, Tumor#2) / Liver

(10.37, 8.35) / 2.40
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1% low-count
(14.93, 15.61) / 11.18

6.25% low-count
(15.95, 12.30) / 4.24

12.5% low-count
(13.41, 10.50) / 3.85

25% low-count
(13.46, 9.62) / 2.44

50% low-count
(10.23, 8.34) / 2.24

75% low-count
(10.54, 8.59) / 2.18

U-net-1p
(8.01, 4.74) / 2.09
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U-net-25p
(8.65, 7.45) / 1.80

U-net-50p
(8.45, 6.74) / 1.81
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SwinIR-12.5p
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Fig. 4  PET image comparisons across the dose reduction spectrum 
from 75 to 1% (of the clinical standard 3  MBq/kg 18F-FDG dose). 
Representative 18F-FDG PET scan of 13-year-old male patient with 
diffuse large B cell lymphoma (DLBCL). The  SUVmax of two tumors 
and liver were measured for each PET image. SwinIR and U-Net are 
our demonstration models of choice, representing the transformer and 
CNN categories, respectively. A The coronal slice of the standard-
dose PET, showing the chest region.  SUVmax of two tumors and liver 
were measured for direct comparison. B The original low-count PET 

images with  SUVmax measured under the same regions of tumors 
and liver as in A. C U-Net restored low-count PET images. The red 
arrows point to corrupted reconstruction in mediastinum and errone-
ous upstaging in liver. Red rectangle: enlargement of false upstaging 
in the liver area. U-Net-75p = U-Net restored 75% low-count PET 
image. D SwinIR restored low-count PET images. The red arrows 
point to the erroneous upstaging. Red rectangle: enlargement of the 
degraded reconstruction in liver. SwinIR-75p, SwinIR restored 75% 
low-count PET image
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advanced transformer models. Two cross-continental PET/
MRI cohorts were used to examine the generalization of 
our findings.

All five AI models possess PET restoration capability. 
From the algorithmic perspective, the advantage of SwinIR 
in low-count PET/MRI restoration is that no pre-training 
is needed according to our experiments; the transformer 
approach complemented the conventional CNN approaches 
in that the innate global self-attention mechanism provided 
long-range dependency that is otherwise lacking in CNNs 
due to the limited receptive field of convolution operations. 
The Swin transformer model (SwinIR) with its shifted win-
dow mechanism further improved the depiction of structural 
details and small lesions that could be missed if the fixed 
partition operations of ViT transformer alone were used. 
A major drawback, however, is the large number of opera-
tions required in SwinIR — resulting in training and test-
ing times that were 10 × longer compared to other state-of-
the-art models. A few studies to date applying transformers 
on PET restoration are mainly focused on low-count brain 
images [47, 48]. This is one of the first studies utilizing Swin 
transformer for whole-body PET restoration.

While AI deep learning architectures are essential in low-
count PET restoration, equally important is the model train-
ing strategy, i.e., the procedure used to carry out the learning 
process; this includes specific considerations such as the loss 
function and when to stop training. To date, few efforts have 
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0.8990

S
S
IM
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Reconstruction at Epoch 4 Reconstruction at Epoch 24 Groundtruth standard-dose PET

Reconstruction at Epoch 4 Reconstruction at Epoch 24 Groundtruth PET

a b c

Training progress

Enlarged brain ventricle Enlarged liver region

Fig. 5  Representative discrepancy in reconstruction quality between 
different anatomical regions over the course of model training. SwinIR 
is the model of choice for this demonstration. The performance is 
based on the primary Stanford PET/MRI cohort. The line chart shows 
the SSIM metric of the Stanford validation set over models at different 

training epochs. PET images illustrate cases from the Stanford testing 
set. The patches (top panel) are enlarged crops of a, b, and c, respec-
tively. As the training progresses from epoch 4 to epoch 24, the struc-
ture of the basal ganglia within the brain becomes better restored, while 
the small lesion (less than 1  cm3) within the liver gets over-smoothed

Table 3  Diagnostic image quality (DIQ) for the standard, low-count, 
and AI-restored PET scans (U-Net and SwinIR)

* DIQ, diagnostic image quality (1 = nondiagnostic, 2 = poor, 3 = accept-
able, 4 = good, 5 = excellent image quality)

PET modality Diagnostic image 
quality — DIQ
Mean (SD)

p-value
w.r.t. correspond-
ing low-count 
PET

100% standard-dose PET 5 (0)
75% low-count PET 4.25 (0.463)
  SwinIR 5 (0) 0.0062
  U-Net 5 (0) 0.0062

50% low-count PET 3 (0)
  SwinIR 4.5 (0.535) 0.0003
  U-Net 4.25 (0.463) 0.0002

25% low-count PET 2.625 (0.516)
  SwinIR 3.75 (0.463) 0.0001
  U-Net 3.75 (0.463) 0.0001

12.5% low-count PET 2 (0)
  SwinIR 3.25 (0.463) 0.0003
  U-Net 3.625 (0.744) 0.0011

6.25% low-count PET 1.125 (0.354)
  SwinIR 4 (0.926) 0.0002
  U-Net 3.75 (0.886) 0.0005

1% low-count PET 1 (0)
  SwinIR 2.5 (0.534) 0.0002
  U-Net 2.5 (0.534) 0.0002
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been made to reconcile these considerations. We made an 
oberservation about the discrepancy in restoration quality 
among different anatomical regions on PET restoration over 
the course of training. This observation underscores the role 
of training strategy in building up the optimal model for 
low-count whole-body PET restoration. Our findings suggest 
that engaging radiologists in the model development loop is 
imperative so that the PET restoration training process can 
be effectively and efficiently guided by domain experts in a 
task-specific fashion. Another possible direction is region-
based restoration that takes the regional difference priors 
into consideration for effectively designing WB PET res-
toration models. Future work is needed on optimizing PET 
restoration training process that can be effectively guided in 
a clinic-task-specific fashion.

Another key contribution of this study is the examina-
tion of AI-powered PET restoration over six groups of count 
levels, representing 75%, 50%, 25%, 12.5%, and 6.25%, to 
extremely ultra-low-count 1% (of the clinical standard 3 MBq/
kg 18F-FDG dose). In order to perform a holistic assessment 
of low-count PET restoration, we adapted multiple AI models 
upon the complete dose reduction spectrum. The most rel-
evant work to our study, published in 2021 [16], evaluated the 
FDA-approved U-Net software across various dosages. This 
commercially available software was trained only on 25% 
low-count PET images and was tested at other percentages. 
In contrast, our study takes the approach of training and test-
ing images in a manner consistent with the relevant reduced 
dosage. To our best knowledge, this study is the first com-
plete investigation of AI-powered whole-body PET restoration 
over the entire dose reducing spectrum. Note that the lowest 
possible reduction in radiotracer dose is dependent on many 
factors, such as tumor type (e.g., pediatric lymphomas and 
sarcomas typically present with strong radiotracer uptake at 

the time of the diagnosis), the timing of the scan with regard 
to the treatment schedule (baseline images typically show 
strong 18F-FDG tumor uptake, follow-up scans after chemo-
therapy demonstrate markedly reduced 18F-FDG tumor signal 
if the tumor responds to therapy), the sensitivity of the PET 
detector, and the duration of the PET data acquisition time. 
The relation between image quality and dose is not binary, 
but continuous. In this study, the most cutting-edge AI mod-
els enabled low-count PET restoration of doses above 6.25% 
with acceptable DIQ, which is consistent with another recent 
study on 6.25% low-count PET restoration [49], while dose 
1% without additional clincal information was out of scope 
for the AI techniques evaluated herein.

This study has the following limitations. Simulated low-
dose PET images were used instead of injecting multiple 
different PET tracer doses in a single patient, considering 
ethically feasiblity. Though previous data have shown that 
simulated low-dose images have characteristics similar to 
those of actual low-dose images [50], evidence of AI restora-
tion in true injected low-dose cases is needed. In addition, 
this study only included patients scanned with FDG, due to its 
clinical prevalency. The use of the deep-learning approaches 
to reconstruct images obtained with non-FDG radiotracers 
may entail different performances dependent upon signal-
to-noise ratios, and the uptake dynamics and locations. The 
model generalizability across different diseases and a wide 
range of patients should be investigated in future work.

In conclusion, the findings from this study hold important 
implications for implementers developing the optimal AI 
model in order to achieve PET imaging with the lowest radi-
ation exposure to patients and non-inferior DIQ. Mitigation 
of ionizing radiation exposure from medical imaging proce-
dures holds critically important potential for clinical impact, 
as reducing such exposure could minimize the potential risk 

Table 4  Overall rate of false 
negatives/false positives across 
8 testing subjects (35 tumors in 
total) with lymphoma

* Region-based clinical evaluation (false negatives/false positives)

PET modality CNS Paraspinal Neck Arms Arms chest Abdomen Pelvis Legs Overall

75% low-count PET 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/1
  SwinIR 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
  U-Net 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

50% low-count PET 0/0 0/0 0/0 0/1 0/1 0/1 0/0 0/0 0/3
  SwinIR 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
  U-Net 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/1

25% low-count PET 0/0 0/0 1/1 0/0 1/1 1/3 0/1 0/0 3/6
  SwinIR 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0 1/1
  U-Net 0/0 0/0 0/0 0/0 0/0 0/2 0/0 0/0 0/2

12.5% low-count PET 0/0 0/0 0/0 0/0 1/1 2/2 0/1 0/0 3/4
  SwinIR 0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/1
  U-Net 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

6.25% low-count PET 0/0 0/1 0/3 0/0 4/1 2/4 0/1 0/0 6/10
  SwinIR 0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/1
  U-Net 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
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of secondary cancer development later in life [5, 51, 52]. 
This is especially important for pediatric patients or patients 
receiving therapies that require repeat imaging with reoccur-
ring radiation exposure. Toward further advancement of this 
domain, we open-sourced the five AI models specifically tai-
lored for low-count PET/MRI restoration. Of note, our code 
may easily be applied to other medical imaging modalities 
(e.g., MRI and CT) and could thereby potentially serve as a 
common foundation for medical image restoration.
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