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1. Patient Cohort and Image Acquisition Description 
In this restrospective study, Health Insurance Portability and Accountability (HIPAA)-compliant clinical trial, two participating 
centers (University of Tübingen, Germany and Stanford University, CA, USA) obtained approval from their institutional review 
board (IRB). In addition, Stanford University obtained IRB approval to collect de-identified imaging studies in a centralized 
image registry, along with relevant clinical information (patient age, sex, tumor type). Written informed consent was obtained 
from all adult patients and parents of pediatric patients. In addition, children were asked to give their assent. Inclusion criteria 
were comprised of the following: (1) age < 30 years, (2) histologically proven lymphoma and (3) PET/MRI scan at baseline 
before chemotherapy. Exclusion criteria were (1) MR-incompatible metal implants, (2) claustrophobia, and (3) pregnancy. 
Between July 2015 and June 2019, we enrolled 22 children and young adults (13 female, 9 male) with lymphoma and a mean 
age (standard deviation; range) of 17 years (7; range: 6-30 years). Tumor histology consisted of 14 patients with Hodgkin 
lymphoma, 6 with non-Hodgkin lymphoma and 2 patients with posttransplant lymphoproliferative disorder (PTLD). For 
Tübingen, 10 patients were enrolled (5 female, 5 male) with a mean age (standard deviation; range) of 14 years (5; range: 3-18 
years) and the following distribution of tumor histology: 8 with Hodgkin lymphoma, 2 with non-Hodgkin lymphoma. 
 
Stanford patients underwent a whole body integrated 18F-FDG PET/MRI scan at baseline on a 3T Signa PET/MRI scanner (GE 
Healthcare, Milwaukee, WI, USA), using a 32-channel torso phased array coil and an eight-channel, receive-only head coil. 
Before the scan, patients had to fast for at least 4 hours and blood glucose levels had to be below 140mg/dl. 18F-FDG was 
administered intravenously 60 minutes before the scan at a dose of 3 megabecquerel per kg body weight. The imaging protocol 
consisted of an axial T1-weighted two-point Dixon Liver Acquisition with Volume Acquisition (LAVA) sequence (repetition 
time (TR) 4.2 ms, echo time (TE) 1.1, 2.3 ms, flip angle (FA) 5, slice thickness (SL) 5.2 mm) for attenuation correction and a 
higher-resolution LAVA sequence (TR 4.2 ms, TE 1.7, 3.4 ms, FA 15, SL 3,4 mm) for anatomical co-registration. PET data 
were acquired simultaneously with MRI scans, using a 25 cm transaxial FOV and 3:30 minute acquisitions per PET bed. PET 
data was reconstructed using scanner-specific algorithms, (3D OSEM: 28 subsets, 2 iterations, with time of flight and point 
spread function information), accounting for attenuation from coils and patient cradle. 
 
Tübingen patients underwent a whole body integrated 18F-FDG PET/MRI scan at baseline on a 3T Signa PET/MRI scanner 
(Siemens Healthineers, Erlangen, Germany), using a 16-channel torso phased array coil and a 16-channel head coil. Before the 
scan, patients had to fast for at least 4 hours and blood glucose levels had to be below 140mg/dl. 18F-FDG was administered 
intravenously 60 minutes before the scan at a dose of 3 megabecquerel per kg body weight. The imaging protocol consisted of an 
axial T1-weighted two-point Dixon Volume Interpolated Breathhold Acquisition (VIBE) sequence (TR 3.95 ms, TEs 1.23, 2.46 
ms, FA 10°, SL 3 mm) for attenuation correction and anatomical co-registration. PET data were acquired simultaneously with 
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MRI scans, using a 25 cm transaxial FOV and 4 minutes acquisitions per PET bed. PET data was reconstructed using scanner-
specific algorithms, (3D OSEM: 21 subsets, 2 iterations), accounting for attenuation from coils and patient cradle. 

Radiotracer input data were used to generate images. Full-dose (3 MBq/kg) PET data were acquired in list mode, which helps 
detect coincidence events across the entire duration of the PET bed time (3 minutes 30 seconds). Low- dose PET images were 
retrospectively simulated by unlisting the PET list-mode data and reconstructing them based on the percentage of coincidence 
events (22). The list-mode PET input data collected over a time period of the first block of 3 minutes 30 seconds, 2 minutes 38 
seconds, 1 minute 45 seconds, 53 seconds, 26 seconds, 13 seconds, and 2 seconds, were used to simulate 100%, 75%, 50%, 
25%, 12.5%, 6.25%, and 1% 18F-FDG dose levels. For data acquired at the Tübingen site, PET Acquisition time was four 
minutes per bed position and low-dose PET images were simulated using the same relative dose levels accordingly. 

2. Image Preprocessing 
DICOM to NifTI conversion was performed with “dcm2niix” command. “dcm2niix” 
(http://manpages.ubuntu.com/manpages/bionic/man1/dcm2niix.1.html) is designed to convert neuroimaging data from the 
DICOM format to the NIfTI format and can be performed using a simple command-line interface from Ubuntu system. The 
pre-processing pipeline aimed to remove the additional burden of the network learning methods to find patterns between images 
for final reconstruction. We adopted the Convert3D (http://www.itksnap.org/c3d/)command-line tool for PET and MRI re-
slicing. This ensures all of the scans are in the same image dimension. In addition, we used ITK-Snap1 to label the foreground 
body area in the scan. These body masks are used to mask out the background area of the PET and MRI images to avoid 
introducing unnecessary noise for reconstruction. Then, top 0.1%  of the pixels in PET images are clipped. Note that the clipping 
operation helps model convergence and stabilize training as these top pixels possess extreme high value and are outliers of the 
distribution. The majority of the top 0.1% pixels are located within the bladder and the brain regions. Thus, the SUV values of 
the significant regions, including liver and lesions, are not much affected after the preprocessing. Finally, all scans are 
normalized between zero and one before feeding them to the neural network model and denormalized after the neural network 
reconstruction.  
 
3. Deep Learning Models and Training Details 
For the model design in low-count PET reconstruction, a skip connection between the low-dose 18F-FDG PET input and the 
final prediction layer is added to alleviate the burden of carrying identity information in the reconstruction network. We adopted 
four-fold cross-validation for the Stanford cohort. Each fold has 36 PET/MRI scans (from 17 patients; except 18 patients in 
fold #4) for training, and 8 scans for testing as well as 4 scans for validation (from 6 patients; except 5 patients in fold #4). In 
terms of the training strategy for the five AI algorithms, we experimented the optimal configuration for each of the algorithms. 
For U-net, we trained the model with AdamW2, using 𝛽! = 0.9 and 𝛽" = 0.99, with a linearly decay learning rate schedule 
(initialized as 1e-3, decay step-size = 8 epochs, decay gamma= 0.8). For EDSR, the setting is the same as U-net, besides 
learning rate initialized as 1e-4. SwinIR shares the same configure as EDSR. For EDSR-ViT, we initialized the EDSR encoder 
part with the EDSR model trained on the Stanford PET/MRI cohort, and initialized the ViT part with the ViT pretrain on 
ImageNet. Then following3, we used a warm-up learning rate (5 epochs) and then linearly decay the learning rate over the 
course of EDSR-ViT training. For GAN, the linear decay learning rates were initialized as 5e-4 and 1e-3 for generator and 
discriminator respectively (decay step-size = 8 epochs, decay gamma= 0.8). AdamW optimizer was adopted with 𝛽! = 0.9 and 
𝛽" = 0.99.	While training the generator of GAN, the weights of the discriminator network are kept constant, and vice versa. 
The parameter updating of generator and discriminator are processed alternately every other iteration. The training was 
performed on four NVIDIA GeForce RTX 3090 GPUs with 24GB VRAM.  
 
4. Composite Loss Function 
The loss function is a cornerstone of neural network models and determines the optimizing direction for model training. We 
applied the commonly used loss functions for the image restoration task –MSE (mean square error) loss and SSIM (structural 
similarity index measure) loss.The SSIM loss encourages production of output images that are structurally similar to the target 
image. Together with MSE loss and SSIM loss, the composite loss function (as below) for optimizing deep learning 
reconstruction models encourages the PET reconstruction process to reduce noise, keep textures, and preserve structural details. 
The PIQA (PyTorch Image Quality Assessment, version 1.1.7) implementation of SSIM was used to compute the SSIM loss 
term. 
 

m𝑖𝑛 ℒ = 𝜆#ℒ$%& + 𝜆'ℒ%%($ 
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In the generative adversarial networks (GAN), the generator and discriminator are trained simultaneously in an adversarial 
process. Pairs of real PET images and outputs from the generator are fed into the discriminator. The discriminator aims to 
distinguish real images and predictions from the generator. The loss function of the discriminator is the cross entropy loss of 
the classification labels. The loss function of the generator consists of three components: 1). the mean square error (MSE) loss 
of the generated images and the real PET images; 2). the SSIM loss of the generated images and the real PET images; 3). the 
adversarial loss computed from the output of the discriminator. Together, the composite loss function encourages the generator 
to produce plausible translations of the source images. The loss function for the generator from GAN is formulated as below. 
 

m𝑖𝑛 ℒ = 𝜆#ℒ$%& + 𝜆'ℒ%%($ + 𝜆)ℒ)*'+,*#*-./, 
 
5. Lessons from Model Training and Experiments 
As the radiotracer dose reduces, the AI model gets more sensitive to the hyper-parameters. We found that results can be 
significantly improved with careful hyperparameter choice – e.g. the initializing learning-rate - for dose below 12.5%. While 
for the dose above 12.5%, the AI models possess more robustness towards the hyperparameter configurations. For all 
algorithms, we found that initializing the convolutional layers with the orthogonal initialization4 enables more efficient 
convergence as opposed to other initialization methods including Kaiming uniform initialization5 and Xavier uniform 
initialization6. 
 
 
6. Quantitative Assessment 
For evaluation, three quantitative metrics were adopted to measure the quality of the reconstructed PET images, including 
SSIM (the structural similarity index), PSNR (peak signal-to-noise ratio), and VIF (Visual information fidelity). The higher the 
SSIM, PSNR and VIF, the better degraded image has been reconstructed to match the original image. The code for calculating 
the performance was written with Python and using Scikit-image toolkit, as below. The VIF metric refers to the implementation 
of https://github.com/aizvorski/video-quality/blob/master/vifp.py. 
 
psnr = skimage.metrics.peak_signal_noise_ratio(y_true, y_pred) 
ssim = skimage.metrics.structural_similarity(y_true, y_pred, multichannel=True, K1=0.0001, K2=0.0003) 
vif = VIF(groundtruth, test) 

The SUV metric in the study was measured using OsiriX version 12.5.1. (OsiriX software).  The SUVmax of the target lesions 
and SUVmax of liver were measured by placing a three-dimensional volume of interest over tumor lesions, and liver. SUV values 
were calculated based on patient body weight by using the following equation: SUV = tissue tracer activity (in millicuries per 
milliliter)/[injected dose (in millicuries)/patient body weight (in grams)].  
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7. More Image Comparison of PET Reconstructions 
 

 

Supplementary Figure 1: An representative 18F-FDG PET scan of a 14-year-old male patient with Hodgkin lymphoma (HL). 
The arrow points to the iv line, which is visiable across all reconstructions, but the contrast with the background is only 
preserved by SwinIR. SwinIR shows superiority in retaining contrast and structural fidelity. 
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Supplementary Figure 2: This figures shows an representative 18F-FDG PET scan of a 11-year-old male patient with Hodgkin 
lymphoma (HL). The write arrow (on the MRI scan) points to the lesion of the left neck lymph node. AI-reconstructed PET 
images (second and third rows) show reduced noise and improved contrast between tumor and liver compared with non-AI-
reconstructed original (first row) PET images. SwinIR outperformed U-net on 6.25% PET reconstruction with better image 

100% standard-dose PET 75% low-dose PET 50% low-dose PET 25% low-dose PET 12.5% low-dose PET 6.25% low-dose PET 1% low-dose PET 

LAVA MRI U-net-75p U-net-50p U-net-25p U-net-12.5p U-net-6.25p U-net-1p 

SwinIR-75p SwinIR-50p SwinIR-25p SwinIR-12.5p SwinIR-6.25p SwinIR-1p 
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denoising and more structural details preserved (SwinIR-6.25P and U-net-6.25P). U-net-75p = U-net reconstructed 75% low-
count PET; SwinIR-75P = SwinIR reconstructed 75% low-count PET. 

Supplementary Figure 3: Diagnostic image quality (DIQ) (mean ± standard deviation) for the original low-count-PET scans, 
and the AI-restored PET scans (U-net and SwinIR) across the entire dose reduction spectrum. Diagnostic image quality (DIQ) 
on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = acceptable, 4 = good, 5 = excellent image quality).  
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