1. Scalar: $3,40,-4$
2. Vector

- definition: an ordered list of scalars
- categories: row vector, column vector
- special case: zero vector
- operations:
- equal: same size + same corresponding elements
- in R^{n} (nth real dimension)
- addition
- scalar multiplication
- dot product:
- $\left[\begin{array}{l}1 \\ 5 \\ 8\end{array}\right] \cdot\left[\begin{array}{c}12 \\ 3 \\ 6\end{array}\right]=(1 x 12)+(5 x 3)+(8 x 6)=12+15+48=75$
- Draw a 2-dim vector in R^{2} and its addition - the parallelogram rule

3. Matrix

- definition:
- a rectangular array of scalars.
- concatenate row vectors vertically
- concatenate column vectors horizontally
- indexing: are given by the row and column number of the element.
- main diagonal of the matrix
- special case: square matrix, identity matrix
- Operations:
- addition
- scalar multiplication
- transpose: flip row and column $\mathbf{A}^{\boldsymbol{T}}$
- Matrix multiplication:
- constrain: inner dimensions must match

\[

\]

- Matrix power: only possible for square matrices

1. Linear System of Equations

- Matrix form: $A x=b$
- Augmented matrix: [A b]

2. How to solve the problem?

- Row Reduction
- principle: eliminate variables in other equations to obtain a simplified equivalent system of equations
- three elementary row operations:
- swap any two rows
- multiply any row by a non-zero scalar
- add any scalar multiple of a row to another row
- Row Echelon Form:
- definition:
- any rows of all zeros appear at the bottom of the matrix
- the first non-zero entry (leading entry, pivot entry) in each row, (reading from the left), occurs to the right of the one in the row above it.
- all entries in a column below a leading entry (pivot entry) are zeros.
- properties:
- not unique
- if the augmented matrix is in row echelon form, the system can be solved using back-substitution
- Reduced Row Echelon Form
- definition:
- row echelon form
- every pivot entry is one

$$
\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
0 & 1 & 1 & 3 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

- all entries in a column above each pivot are zeros
- properties:
- unique for every matrix
- if the augmented matrix is in reduced row echelon form, then the system can be solved easily by inspection.

3. How many solutions do we have?

- Free Variables \& Basic Variables

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & -10 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

- variables corresponding to pivot columns are called basic variables
- otherwise, free variables
$\left.\begin{array}{cccc|c}{\left[\begin{array}{cccc}0 & 1 & 2 & 0 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 0\end{array}\right.} & 0 \\ x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right] \quad\left[\begin{array}{ccc}1 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

Fig.4: inconsistent system

- inconsistent system: no solution
- a system of linear equations is inconsistent if and only if a row echelon form of its augmented matrix has a pivot in the right most column
- consistent system:
- unique solution: no free variables
- infinite solution: has free variables

(continue from lecture\#2)

4. For linear system of equations, which has infinite solution, how do we parameterize all solutions?

- principle: write all variables in terms of free variables
- solution set = particular vector + linear combination of spanning vectors
- there is only one spanning vector for each free variable

5. linear combination:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\underbrace{\left[\begin{array}{l}
0 \\
5 \\
0 \\
6
\end{array}\right]}_{p}+x_{1} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}_{v_{1}}+x_{3} \underbrace{\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]}_{v_{2}}
$$

- definition:
- A linear combination of vectors is a weighted sum of a set of n vectors: $\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right.$, $\left.\ldots, \mathrm{V}_{n}\right]$, written as: $\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}+\mathrm{C}_{3} \mathrm{~V}_{3}+\ldots+\mathrm{C}_{n} \mathrm{~V}_{\mathrm{n}}$, where the c values can be any scalar
- example:

6. span:

$$
c_{1}\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \\
0 \\
3
\end{array}\right]+c_{3}\left[\begin{array}{c}
3 \\
4 \\
-7
\end{array}\right]
$$

- definition:
- the span of vectors is the set of all their linear combinations.
- those original vector set are called the spanning vectors
- shape:
- the set of all points (vectors) we can reach through scaling \& addition is the span

Fig 1: span of a nonzero vector straight line passing through v and 0

Fig 2: span of two independent vectors plane passing through u, v and 0

Fig 3: span of two colinear vectors straight line passing through u, v and 0

7. Homogeneous Equation $A x=0$

- trivial solution: the zero vector
- What is the correlation between solution sets of $A x=b$ (consistent case) and $A x=0$?
- property\#1: have the same number of solutions
- reason: \#free-variables in rref (reduced row echelon form) are the same
- property\#2: if \mathbf{p} is the particular solution of $A x=b, \mathbf{v}$ is solution set of $A x=0=>$ $\mathbf{w}=\mathbf{p}+\mathbf{v}$ is the solution set for $\mathrm{Ax}=\mathrm{b}$
- property \#3: if $\mathbf{w}=\mathbf{p}+\mathbf{v}$ is the solution set of $A \mathbf{x}=\mathrm{b}, \mathrm{v}$ is the span part $=>\mathbf{v}$ is the solution set of $A x=0$
- Geometrically: The solution set of $\mathrm{Ax}=\mathrm{b}$ is a line/plane through \mathbf{p} parallel to the solution set of $A x=0$

8. Geometric understanding

- vector addition: combining two movements, represented by each vector
- Anytime we describe vector numerically, it depends on an implicit choice of what basis vectors we are using.
- vector is a linear combination of the coordinate system's basis vectors (the value of each entry in the vector corresponds to the coefficient/scalar of each basis vector)

1. Linear Independence

- definition:
- The vectors in a set $T=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ are said to be linearly independent if the equation: $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\ldots+a_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$, can only be satisfied by $a_{i}=0$ for $i=1, \ldots, n$
- This implies that no vector in the set can be represented as a linear combination of the remaining vectors in the set.
- special case: v_{1} and v_{2} are called colinear \Leftrightarrow one of the vectors is a scalar multiple of the other.
- row reduction is the easiest way to tell which vectors in a set are linearly dependent or independent

2. Revisit $A x=b$

- if the vector b is inside the span of the columns of A (the matrix equation has a solution), then b can be written as a linear combination of the columns of A.

$$
\quad x_{1}\left[\begin{array}{l}
a_{1,1} \\
a_{2,1} \\
a_{3,1}
\end{array}\right]+x_{2}\left[\begin{array}{l}
a_{1,2} \\
a_{2,2} \\
a_{3,2}
\end{array}\right]+x_{3}\left[\begin{array}{l}
a_{1,3} \\
a_{2,3} \\
a_{3,3}
\end{array}\right]=b
$$

3. The essence of matrix-vector multiplication (Ax=b)

- Applying a certain linear transformation to the vector

- this linear transformation is completely determined by where it takes the basis vectors of the space.
- $[(\mathrm{a}, \mathrm{c})$ and $(\mathrm{b}, \mathrm{d})]$ are the two basis vectors $[(1,0)$ and $(0,1)]$ moved to after the transformation
- Identity transformation:
- the transformation does nothing, the i -hat and j -hat remains unmoved.

4. Linear transformation

- Numerically: formal linearity properties:
- $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
- $\mathrm{cT}(\mathbf{u})=\mathrm{T}(\mathbf{c u})$
- Geometrically:
- origin remain fixed
- lines remain lines without getting curved \Rightarrow keeping grid lines parallel and equally space.
- examples:
- scaling, rotation, reflection, shear (scale the vector differently in different dimensions), projection
- what is invertible transformation?
- for every $u \in R^{m}$ there is one and only one $v \in R^{n}$ such that $u=T(v)$
- Corresponding inverse transformation takes u to $v, T^{-1}: R^{m} \rightarrow R^{n}$

5. Matrix Inverse

- A^{-1} is the unique transformation with the property that if you first apply A, then followed it with the transformation A^{-1}. You end up back where you started.
- $A A^{-1}=A^{-1} A=I$

Fig2: Rotation. Invertible

1. Invertible Transformation: onto \& one-to-one

- definition: for every $u \in R^{m}$ there is one and only one $v \in R^{n}$ such that $u=T(v)$
- onto \Leftrightarrow every:
- every vector b in the transformed space has one/multiple correspondence in the original space
- $A x=b$ has solution for every $b \Leftrightarrow A x=b$ is consistent for every b
- A has a pivot in every row
- one-to-one \Leftrightarrow one and only one: if
- if b has correspondent mapping in the original space, then that mapping is unique.
- all variables in the system are basic variables, no free variables
- A has a pivot in each column
- invertible/isomorphism
- one-to-one \& onto

2. Determinant

- definition geometrically:
- tells how much a transformation scales area
- the factor by which a linear transformation changes any area
- the sign represents the orientation of the space. If determinant is negative:
- space gets flipped over
- the orientation of the space has been inverted
- in 2D case, j-hat is to the right of i-hat
- compute:
- $2 x 2$ case
- properties:

- if A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$

3. Revisit $\mathrm{Ax}=\mathrm{b}: \operatorname{det}(A) \& A^{-1}$

- if $\operatorname{det}(A)=0$:
- the transformation A squishes space into a smaller dimension (think about projection: plane->line, figure below)
- A^{-1} doesn't exist!
- you cannot un-squish a line to turn it into a plane (not one-to-one)
- solution might exist
- if we are lucky enough, that the vector b lives on that transformed line/ plane
- if $\operatorname{det}(A) \neq 0$:
- space doesn't get squished into a lower dimension
- can always find the unique vector x lands on b after the transformation A
- A^{-1} exist! (one-to-one, onto)
- solution exist: $x=A^{-1} b$, where $A A^{-1}=I$
- Note: A^{-1} exist $\Rightarrow A x=b$ have unique solution; A is not invertible $\neq A x=b$ has no solution 4. If A is invertible:
- A is a square matrix.
- A has a pivot in every row $\Leftrightarrow A$ has a pivot in every column
- the columns of A are linearly independent
- each of the column in A cannot be written as a linear combination of the other columns
- the transformation A represents doesn't squish the space to a lower dimension
- determinate of A is not ZERO

1. subspace, column space, null space and rank.

- subspace: any region within a space R^{n} that is expressible as a span
- contains the zero vector
- is the span of the collection of all vectors
- column space:
- the span of the columns of your matrix, where columns are the basis vectors of the space
- rank:
- the \#dimensions in the output of a transformation / in the column space
- full rank: the column space equals \#columns, is as high as it can be.
- columns in standard matrix A are linearly independent
- A has a pivot in each column
- for a square matrix A, \underline{A} is full rank $\Leftrightarrow A$ is invertible (geometrically, the space doesn't get squished after the transformation)
- null space:
- the set of vectors that lands on the origin, after the transformation
- $A x=0$, null space gives us all possible solutions to the equation
- nullity:
- the dimension of the null space of a matrix
- if matrix A has n columns: $\underline{\operatorname{rank}(A)+\operatorname{nullity}(A)=n}$
- Example: Graph the columns space of null space of $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

2. How to compute A-inverse?

- $[A \mid I] \xrightarrow{\text { rref }}\left[I \mid A^{-1}\right]$

3. revisit $A x=b$, the choice of basis
. $\mathrm{Ax}=\mathrm{b} \Rightarrow\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$

- x is the coefficients:
- the linear combination / coordinate of the original vector \vec{u}, based on original basis \hat{i}, \hat{j}
- the linear combination / coordinate of the transformed vector \hat{u}^{\prime}, based on transformed basis ${\hat{i^{\prime}}}^{\prime}, \hat{j}^{\prime}$
- the original vector \hat{u} and transformed vector \hat{u}^{\prime} share the same linear combination / coordinate out of two different basis. (as a result of the property: the grid lines remain parallel and evenly spaced)
- b is the linear combination / coordinate of the transformed vector \hat{u}^{\prime}, based on original basis \hat{i}, \hat{j}

1. Eigenvector \& Eigenvalue

- Eigenvector is a special vector that after linear transformation A, it turns into scalar multiples of itself.
- they are the ones that stay on their own span during a transformation.
- Eigenvalue is the factor by which it is stretched or squashed during the transformation.
- $A x=\lambda x \Leftrightarrow(A-\lambda I) x=0, x$ is a nonzero vector (eigenvector) and λ is a scalar (eigenvalue)
- reason: identity matrix multiple any matrix won't change that matrix
- Characteristic equation:
- $\operatorname{det}(A-\lambda I)=0$
- How to compute eigenvalue?
- homogeneous system $(A-\lambda I) x=0$ has nontrivial/nonzero solution for particular λ
- matrix $A-\lambda I$ is not invertible $\Leftrightarrow \operatorname{det}(A-\lambda I)=0$
- get λ
- How to compute eigenvector with respect to specific eigenvalue λ ?
- eigenvector is the solution set of the homogeneous system $(A-\lambda I) x=0$
- rref of $A-\lambda I$; write all variables in terms of free variables; parametric form.

2. Basis

- a basis for a subspace is a linearly independent set whose span is the subspace
- standard basis: identity matrix
- a basis for the column space A is formed from the linearly independent columns of A

3. magnitude of a vector:

- the vector's length / the distance from tail to head Distance Formula
- $\|u\|=\sqrt{u \cdot u}$

4. unit vector

- vector whose magnitude is one $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

- the unit vector in the same direction of $u: \hat{u}=\frac{u}{\|u\|}$

5. dot product geometrically

- $a \bullet b=\|a|\| b| \mid \cos \theta$
- if a and b are perpendicular, $a \bullet b=0$
- if a and b are opposing directions, $a \bullet b \prec 0$
- if a and b are pointing in the same direction, $a \bullet b \succ 0$

6. orthogonal basis

- basis vectors are orthogonal to each other
- the dot product of any two vectors in the set is zero

orthonormal basis
- orthogonal + normalize
- all vectors in the set are unit that are orthogonal to each other

8. orthogonal matrix A: A is square matrix with orthonormal columns. $A^{-1}=A^{T}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

- a method to find an orthogonal basis for a subspace given any basis for that subspace
- given basis \vec{u}, \vec{v}, the orthogonal basis \vec{x}, \vec{y}
- $\vec{x}=\operatorname{proj}_{v} u=\frac{\vec{v}}{\|v\|} \cdot\|u\| \cos \theta=\frac{\vec{u} \vec{v}}{\vec{v} \cdot} \cdot \vec{v} ; \vec{y}=\vec{u}-\vec{x}$

1. Eigenvector \& Eigenvalue

- Eigenvector is a special vector that after linear transformation A, it turns into scalar multiples of itself.
- they are the ones that stay on their own span during a transformation.
- Eigenvalue is the factor by which it is stretched or squashed during the transformation.
- $A x=\lambda x \Leftrightarrow(A-\lambda I) x=0, x$ is a nonzero vector (eigenvector) and λ is a scalar (eigenvalue)
- reason: identity matrix multiple any matrix won't change that matrix
- Characteristic equation:
- $\operatorname{det}(A-\lambda I)=0$
- How to compute eigenvalue?
- homogeneous system $(A-\lambda I) x=0$ has nontrivial/nonzero solution for particular λ
- matrix $A-\lambda x$ is not invertible $\Leftrightarrow \operatorname{det}(A-\lambda I)=0$
- get λ
- How to compute eigenvector with respect to specific eigenvalue λ ?
- eigenvector is the solution set of the homogeneous system $(A-\lambda I) x=0$
- rref of $A-\lambda I$; write all variables in terms of free variables; parametric form.

2. Basis

- a basis for a subspace is a linearly independent set whose span is the subspace
- standard basis: identity matrix
- a basis for the column space A is formed from the linearly independent columns of A

3. magnitude of a vector:

- the vector's length / the distance from tail to head Distance Formula
- $\|u\|=\sqrt{u \cdot u}$

4. unit vector

- vector whose magnitude is one $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

- the unit vector in the same direction of $u: \hat{u}=\frac{u}{\|u\|}$

5. dot product geometrically

- $a \bullet b=\|a|\| b| \mid \cos \theta$
- if a and b are perpendicular, $a \bullet b=0$
- if a and b are opposing directions, $a \bullet b \prec 0$
- if a and b are pointing in the same direction, $a \bullet b \succ 0$

6. orthogonal basis

- basis vectors are orthogonal to each other
- the dot product of any two vectors in the set is zero

orthonormal basis
- orthogonal + normalize
- all vectors in the set are unit that are orthogonal to each other

8. orthogonal matrix A: A is square matrix with orthonormal columns. $A^{-1}=A^{T}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

- a method to find an orthogonal basis for a subspace given any basis for that subspace
- given basis \vec{u}, \vec{v}, the orthogonal basis \vec{x}, \vec{y}
- $\vec{x}=\operatorname{proj}_{v} u=\frac{\vec{v}}{\|v\|} \cdot\|u\| \cos \theta=\frac{\vec{u} \vec{v}}{\vec{v} \cdot} \cdot \vec{v} ; \vec{y}=\vec{u}-\vec{x}$

1. Least Square Approximation

- the approximate solution for inconsistent system $A x=b$
- principle: b is not in the column space of A, therefore the system has no solution for x. But it has approximate solution \hat{x}, where the corresponding \hat{b} is closer to b than any other vector in $\operatorname{col}(\mathrm{A})$.
- objective: minimize the distance between real b (not in col(A)) and approximate \hat{b} (in col(A))
- $\min \|b-\hat{b}\|^{2}$ where $b-\hat{b}$ is the vector going from $\operatorname{col}(\mathrm{A})$ to b
- solution:
- $\hat{b}=\operatorname{Proj} j_{c o l(A)} b \Leftrightarrow b-\hat{b}$ is orthogonal to $\operatorname{col}(\mathrm{A})$

- $A^{T}(b-\hat{b})=0 \Leftrightarrow A^{T} b=A^{T} \hat{b} \Leftrightarrow A^{T} A \hat{x}=A^{T} b$ (matrix-vector multiplication)
- augment matrix $\left[A^{T} A \mid A^{T} \hat{b}\right.$], do row reduction, get rref and the solution set for \hat{x}
- \hat{x} is the approximate solution for $\mathrm{Ax}=\mathrm{b}$

2. Least Square Regression Line

- problem:
- given a set of points: $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle \ldots,\left\langle x_{n}, y_{n}\right\rangle$

- find a regression line (a best-fit line) that attempts to fit a set of points to a straight line. Format the regression line $y=C_{1} x+C_{0}$
- objective: minimize the mean squared error between every data point and the line.
- equals: minimize the average distance between a data point and its orthogonal projection on the line
- matrix format: $\mathrm{Ax}=\mathrm{b}$. no solution.
- find approximate solution using Least Square Approximation (above)

3. Lease Square Regression Curve

- order corresponds to the highest exponent of x
- $1^{\text {st }}$ order curve (line): $y=C_{1} x+C_{0}$
- $2^{\text {nd }}$ order curve (parabola): $y=C_{2} x^{2}+C_{1} x+C_{0}$
- 3rd order curve: $y=C_{3} x^{3}+C_{2} x^{2}+C_{1} x+C_{0}$
- $\mathrm{n}^{\text {th }}$ order curve: $y=C_{n} X^{n}+\ldots+C_{3} x^{3}+C_{2} x^{2}+C_{1} x+C_{0}$
- Theory: a set of n data points can be fit perfectly with a curve of order n-1
- e.g.: three points can be fit perfectly by a parabola.

4. Cross product

- definition: $v \times w=p$, cross product p is a vector
- magnitude:
- the area of the parallelogram that vector v, w enclose
- $\operatorname{det}([v, w])$
- direction:
- p is perpendicular to v and w
- obeys the right hand rule (the forefinger points to v)

