1. Scalar: 3, 40, -4

2. Vector

- definition: an ordered list of scalars
- categories: row vector, column vector
- special case: zero vector
- operations:
 - equal: same size + same corresponding elements
 - in Rⁿ (nth real dimension)
 - addition
 - scalar multiplication
 - dot product:

$$\begin{bmatrix} 1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 12 \\ 3 \end{bmatrix} = (1x12) + (5x3) + (8x6) = 12 + 15 + 48 = 75$$

- [8] [6]
- Draw a 2-dim vector in R² and its addition the parallelogram rule

FIGURE 3 The parallelogram rule.

3. Matrix

- definition:
 - a rectangular array of scalars.
 - concatenate row vectors vertically
 - · concatenate column vectors horizontally
- indexing: are given by the row and column number of the element.

$$\begin{bmatrix} 2_{1,1} & 9_{1,2} & 67_{1,3} & 78_{1,4} \\ -5_{2,1} & 64_{2,2} & 21_{2,3} & 12_{2,4} \\ 8_{3,1} & 19_{3,2} & 32_{3,3} & 77_{3,4} \\ 83_{4,1} & 17_{4,2} & 2_{4,3} & -4_{4,4} \\ 28_{5,1} & 11_{5,2} & 54_{5,3} & 19_{5,4} \end{bmatrix}$$

- main diagonal of the matrix
- special case: square matrix, identity matrix
- Operations:
 - addition
 - scalar multiplication
 - transpose: flip row and column AT
 - Matrix multiplication:
 - constrain: inner dimensions must match

· Matrix power: only possible for square matrices

- 1. Linear System of Equations
 - Matrix form: Ax=b
 - Augmented matrix: [A b]
- 2. How to solve the problem?
 - Row Reduction
 - principle: eliminate variables in other equations to obtain a simplified equivalent system of equations
 - three elementary row operations:
 - swap any two rows
 - multiply any row by a non-zero scalar
 - add any scalar multiple of a row to another row
 - Row Echelon Form:
 - definition:
 - any rows of all zeros appear at the bottom of the matrix
 - the first non-zero entry (leading entry, pivot entry) in each row, (reading from the left), occurs to the right of the one in the row above it.
 - all entries in a column **below** a leading entry (pivot entry) are **zeros**.
 - properties:
 - not unique
 - if the augmented matrix is in row echelon form, the system can be solved using back-substitution 1 3 2 1

Reduced Row Echelon Form

- definition:
 - row echelon form
 - every pivot entry is one
 - all entries in a column above each pivot are zeros
- properties:
 - **unique** for every matrix
 - if the augmented matrix is in reduced row echelon form, then the system can be solved easily by inspection. $1 \quad 0 \quad 0 \quad -10$
 - 0 1 0 5 $0 \ 0 \ 1$ -2

 $0 \ 1 \ 1 \ 3$

 $0 \ 0 \ 1 \ -2$

Fig.2: row echelon form

- 3. How many solutions do we have?
 - Free Variables & Basic Variables
- Fig.3: reduced row echelon form variables corresponding to pivot columns are called basic variables
 - otherwise, free variables

Fig.4: inconsistent system

- inconsistent system: no solution
 - a system of linear equations is inconsistent if and only if a row echelon form of its augmented matrix has a pivot in the right most column
- consistent system:
 - **unique** solution: **no free** variables
 - infinite solution: has free variables

Fig. 1: linear system of equations

 $12][x_1]$

3

15

[18]

 $|x_2| = |21|$

 $\begin{array}{c} x_1 + 4x_2 + 12x_3 = 18 \\ 7x_1 + 3x_3 = 21 \end{array}$ $6x_1 - 10x_2 + 15x_3 = 45$

4

0

-10

Г1 7

(continue from lecture#2)

4. For linear system of equations, which has infinite solution, how do we **parameterize** all solutions?

- principle: write all variables in terms of **free** variables
- solution set = particular vector + linear combination of spanning vectors
- there is only one spanning vector for each free variable
- 5. linear combination:
 - definition:
 - A linear combination of vectors is a weighted sum of a set of n vectors: [v1, v2, v3,
 - ..., v_n], written as: $c_1v_1+c_2v_2+c_3v_3+...+c_nv_n$, where the c values can be any scalar
 - example:

$c_1 \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$	+ c ₂	[-2] 0 3	+ <i>c</i> ₃	$\begin{bmatrix} 3\\4\\-7\end{bmatrix}$	
101		- 5 -		L—/]	

6. **span**:

- definition:
 - the span of vectors is the set of all their linear combinations.
 - those original vector set are called the **spanning vectors**
- shape:
 - the set of all points (vectors) we can reach through scaling & addition is the span

Fig 1: span of a nonzero vector -
straight line passing through v and 0Fig 2: span of two independent vectors -
plane passing through u, v and 0Fig 3: span of two colinear vectors -
straight line passing through u, v and 0

7. Homogeneous Equation Ax=0

- trivial solution: the zero vector
- What is the correlation between solution sets of Ax=b (consistent case) and Ax=0?
 - property#1: have the same number of solutions
 - reason: #free-variables in rref (reduced row echelon form) are the same
 - <u>property#2</u>: if **p** is the particular solution of Ax=b, **v** is solution set of Ax=0 => w=p+v is the solution set for Ax=b
 - <u>property#3</u>: if w=p+v is the solution set of Ax=b, v is the span part=> v is the solution set of Ax=0
- Geometrically: The solution set of Ax=b is a line/plane through p parallel to the solution set of Ax=0

- 8. Geometric understanding
 - vector addition: combining two movements, represented by each vector
 - Anytime we describe vector numerically, it depends on an implicit choice of what **basis** vectors we are using.
 - vector is a linear combination of the coordinate system's basis vectors (the value of each entry in the vector corresponds to the coefficient/scalar of each basis vector)

- 1. Linear Independence
 - definition:
 - The vectors in a set $T = {\vec{v_1, v_2, ..., v_n}}$ are said to be *linearly independent* if the equation: $\vec{a_1 v_1 + a_2 v_2 + ... + a_n v_n} = \vec{0}$, can only be satisfied by $\vec{a_i} = 0$ for i = 1, ..., n
 - This implies that **no** vector in the set can be represented as a linear combination of the remaining vectors in the set.
 - special case: v₁ and v₂ are called colinear ⇔ one of the vectors is a scalar multiple of the other.
 - **row reduction** is the easiest way to tell which vectors in a set are linearly dependent or independent
- 2. Revisit Ax=b
 - if the vector b is inside the span of the columns of A (the matrix equation has a solution), then b can be written as a *linear combination of the columns of A*.

A	x = b		
$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{bmatrix}$	$\begin{bmatrix} a_{1,3} \\ a_{2,3} \\ a_{3,3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$	$x_1 \begin{bmatrix} a_{1,1} \\ a_{2,1} \\ a_{3,1} \end{bmatrix} + x_2$	$\begin{bmatrix} a_{1,2} \\ a_{2,2} \\ a_{3,2} \end{bmatrix} + x_3 \begin{bmatrix} a_{1,3} \\ a_{2,3} \\ a_{3,3} \end{bmatrix} = b$

- 3. The essence of matrix-vector multiplication (Ax=b)
 - Applying a certain linear transformation to the vector

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- this linear transformation is completely **determined** by where it takes the **basis vectors** of the space.
- [(a,c) and (b,d)] are the two basis vectors [(1,0) and (0,1)] moved to after the transformation
- Identity transformation:
 - the transformation does nothing, the i-hat and j-hat remains unmoved.
- 4. Linear transformation
 - Numerically: formal linearity properties:
 - T(u+v) = T(u) + T(v)
 - cT(u) = T(cu)
 - Geometrically:
 - origin remain fixed
 - lines remain lines without getting curved ⇒ keeping grid lines parallel and equally space.
 - examples:
 - scaling, rotation, reflection, shear (scale the vector differently in different dimensions), projection
 - what is invertible transformation?
 - for every $u \in \mathbb{R}^m$ there is one and only one $v \in \mathbb{R}^n$ such that u = T(v)
 - Corresponding inverse transformation takes u to v, $T^{-1}: \mathbb{R}^m \to \mathbb{R}^n$
- 5. Matrix Inverse
 - A^{-1} is the **unique** transformation with the property that if you first apply A, then followed
 - it with the transformation A^{-1} . You end up back where you started.
 - $AA^{-1} = A^{-1}A = I$

Fig2: Rotation. Invertible

- 1. Invertible Transformation: onto & one-to-one
 - definition: for every $u \in R^m$ there is one and only one $v \in R^n$ such that u = T(v)
 - onto \Leftrightarrow every:
 - every vector b in the transformed space has one/multiple correspondence in the original space
 - Ax=b has solution for every b ⇔Ax=b is consistent for every b
 - A has a pivot in every row
 - one-to-one ⇔ one and only one: if
 - if b has correspondent mapping in the original space, then that mapping is unique.
 - all variables in the system are basic variables, no free variables
 - A has a pivot in each column
 - invertible/isomorphism
 - one-to-one & onto
- 2. Determinant
 - definition geometrically:
 - tells how much a transformation scales area
 - the factor by which a linear transformation changes any area
 - the sign represents the orientation of the space. If determinant is negative:
 - space gets flipped over
 - the orientation of the space has been inverted
 - in 2D case, j-hat is to the right of i-hat
 - compute:
 - 2x2 case $\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad bb$
 - properties:
 - if A and B are $n \times n$ matrices, then det(AB) = (det A)(det B)
- 3. Revisit $Ax=b: det(A) \& A^{-1}$
 - if det(A) = 0:
 - the transformation A squishes space into a smaller dimension (think about projection: plane->line, *figure below*)
 - A^{-1} doesn't exist!
 - you cannot un-squish a line to turn it into a plane (not one-to-one)
 - solution might exist
 - if we are lucky enough, that the vector b lives on that transformed line/ plane
 - if $det(A) \neq 0$:
 - space doesn't get squished into a lower dimension
 - can always find the **unique** vector x lands on b after the transformation A
 - A⁻¹ exist! (one-to-one, onto)
 - solution exist: $x = A^{-1}b$, where $AA^{-1} = I$
 - Note: A^{-1} exist $\Rightarrow Ax = b$ have unique solution; A is not invertible $\neq Ax = b$ has no solution
- 4. If A is invertible:
 - A is a square matrix.
 - A has a pivot in every row \Leftrightarrow A has a pivot in every column
 - the columns of A are linearly independent
 - each of the column in A cannot be written as a linear combination of the other columns
 - the transformation A represents doesn't squish the space to a lower dimension
 - determinate of A is not ZERO

- 1. subspace, column space, null space and rank.
 - subspace: any region within a space R^n that is expressible as a span
 - · contains the zero vector
 - · is the span of the collection of all vectors
 - column space:
 - the span of the columns of your matrix, where columns are the basis vectors of the space
 - rank:
- the #dimensions in the output of a transformation / in the column space
- full rank: the column space equals #columns, is as high as it can be.
 - · columns in standard matrix A are linearly independent
 - A has a pivot in each column
 - for a square matrix A, <u>A is full rank ⇔ A is invertible</u> (geometrically, the space doesn't get squished after the transformation)

• Example: Graph the columns space of null space of $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Null(A) = the zero vector

 $Col(A) = all of R^2$

- null space:
 - the set of vectors that lands on the origin, after the transformation
 - Ax=0, null space gives us all possible solutions to the equation
- nullity:
 - the dimension of the null space of a matrix
- if matrix A has n columns: $\underline{rank(A) + nullity(A) = n}$
- 2. How to compute A-inverse?
 - $[A | I] \xrightarrow{rref} [I | A^{-1}]$
- 3. revisit Ax=b, the choice of basis

- x is the coefficients:
 - the linear combination / coordinate of the original vector \vec{u} , based on original basis \hat{i}, \hat{j}
 - the linear combination / coordinate of the transformed vector \hat{u}' , based on transformed basis \hat{i}', \hat{j}'
 - the original vector
 û and transformed vector
 û' share the same linear
 <u>combination / coordinate</u> out of two different basis. (as a result of the property:
 the grid lines remain parallel and evenly spaced)
- b is the linear combination / coordinate of the transformed vector û', based on original basis î, ĵ

- 1. Eigenvector & Eigenvalue
 - **Eigenvector** is a special vector that after linear transformation A, it turns into scalar multiples of itself.
 - they are the ones that stay on their own span during a transformation.
 - **Eigenvalue** is the factor by which it is stretched or squashed during the transformation.
 - $Ax = \lambda x \Leftrightarrow (A \lambda I)x = 0$, x is a **nonzero vector (eigenvector)** and λ is a scalar (eigenvalue)
 - reason: identity matrix multiple any matrix won't change that matrix
 - Characteristic equation:

• $\det(A - \lambda I) = 0$

- How to compute eigenvalue?
 - homogeneous system $(A \lambda I)x = 0$ has **nontrivial/nonzero** solution for particular λ
 - matrix $A \lambda I$ is not invertible $\Leftrightarrow \det(A \lambda I) = 0$
 - get λ
- How to compute eigenvector with respect to specific eigenvalue λ?
 - eigenvector is the solution set of the homogeneous system $(A \lambda I)x = 0$
 - rref of $A \lambda I$; write all variables in terms of free variables; parametric form.
- 2. Basis
 - a basis for a subspace is a linearly independent set whose span is the subspace
 - standard basis: identity matrix
 - a basis for the column space A is formed from the linearly independent columns of A
- 3. magnitude of a vector:
 - the vector's length / the distance from tail to head

•
$$||u|| = \sqrt{u \cdot u}$$

- 4. unit vector
 - vector whose magnitude is one
 - the unit vector in the same direction of $u: \hat{u} = \frac{u}{||u|}$
- 5. dot product geometrically
 - $a \bullet b = ||a|||b||\cos\theta$
 - if *a* and *b* are perpendicular, $a \bullet b = 0$
 - if *a* and *b* are **opposing** directions, $a \bullet b \prec 0$
 - if *a* and *b* are pointing in the same direction, $a \bullet b \succ 0$
- 6. orthogonal basis
 - basis vectors are <u>orthogonal to each other</u>
 - the dot product of any two vectors in the set is zero
- 7. orthonormal basis
 - orthogonal + normalize
 - · all vectors in the set are unit that are orthogonal to each other
- 8. orthogonal matrix A: A is square matrix with orthonormal columns. $A^{-1} = A^{T}$
- 9. Graham-Schmidt Procedure
 - a method to find an orthogonal basis for a subspace given any basis for that subspace
 - given basis \vec{u}, \vec{v} , the orthogonal basis \vec{x}, \vec{y}

 $\vec{x} = proi_n u$

- 1. Eigenvector & Eigenvalue
 - **Eigenvector** is a special vector that after linear transformation A, it turns into scalar multiples of itself.
 - they are the ones that stay on their own span during a transformation.
 - **Eigenvalue** is the factor by which it is stretched or squashed during the transformation.
 - $Ax = \lambda x \iff (A \lambda I)x = 0$, x is a **nonzero vector (eigenvector)** and λ is a scalar (eigenvalue)
 - reason: identity matrix multiple any matrix won't change that matrix
 - Characteristic equation:

• $\det(A - \lambda I) = 0$

- How to compute eigenvalue?
 - homogeneous system $(A \lambda I)x = 0$ has **nontrivial/nonzero** solution for particular λ
 - matrix $A \lambda x$ is not invertible $\Leftrightarrow \det(A \lambda I) = 0$
 - get λ
- How to compute eigenvector with respect to specific eigenvalue λ?
 - eigenvector is the solution set of the homogeneous system $(A \lambda I)x = 0$
 - rref of $A \lambda I$; write all variables in terms of free variables; parametric form.
- 2. Basis
 - a basis for a subspace is a linearly independent set whose span is the subspace
 - standard basis: identity matrix
 - a basis for the column space A is formed from the linearly independent columns of A
- 3. magnitude of a vector:
 - the vector's length / the distance from tail to head

•
$$||u|| = \sqrt{u \cdot u}$$

- 4. unit vector
 - vector whose magnitude is one
 - the unit vector in the same direction of $u: \hat{u} = \frac{u}{||u|}$
- 5. dot product geometrically
 - $a \bullet b = ||a|||b||\cos\theta$
 - if *a* and *b* are perpendicular, $a \bullet b = 0$
 - if *a* and *b* are **opposing** directions, $a \bullet b \prec 0$
 - if *a* and *b* are pointing in the same direction, $a \bullet b \succ 0$
- 6. orthogonal basis
 - basis vectors are <u>orthogonal to each other</u>
 - the dot product of any two vectors in the set is zero
- 7. orthonormal basis
 - orthogonal + normalize
 - · all vectors in the set are unit that are orthogonal to each other
- 8. orthogonal matrix A: A is square matrix with orthonormal columns. $A^{-1} = A^{T}$
- 9. Graham-Schmidt Procedure
 - a method to find an orthogonal basis for a subspace given any basis for that subspace
 - given basis \vec{u}, \vec{v} , the orthogonal basis \vec{x}, \vec{y}

here ÿ⊥ v

 $= A^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

1. Least Square Approximation

- the approximate solution for inconsistent system Ax=b
- **principle**: b is not in the column space of A, therefore the system has no solution for x. But it has approximate solution \hat{x} , where the corresponding \hat{b} is closer to b than any other vector in col(A).
- objective: minimize the distance between real b (not in col(A)) and approximate \hat{b} (in col(A))
 - $\min \left\| b \hat{b} \right\|^2$ where $b \hat{b}$ is the vector going from col(A) to b
- solution:
 - $\hat{b} = \Pr{oj_{col(A)}}b \Leftrightarrow b \hat{b}$ is orthogonal to col(A)
 - $A^{T}(b-\hat{b}) = 0 \iff A^{T}b = A^{T}\hat{b} \iff \underline{A^{T}A\hat{x}} = A^{T}b$ (matrix-vector multiplication)
 - augment matrix $[A^T A | A^T \hat{b}]$, do row reduction, get rref and the solution set for \hat{x}
 - \hat{x} is the approximate solution for Ax=b

2. Least Square Regression Line

- problem:
 - given a set of points: $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \dots, \langle x_n, y_n \rangle$
 - find <u>a regression line</u> (a best-fit line) that attempts to fit a set of points to a straight line. Format the regression line $y = C_1 x + C_0$
- objective: minimize the mean squared error between every data point and the line.
 - equals: minimize the average distance between a data point and its orthogonal projection on the line
- matrix format: Ax=b. no solution.
- find approximate solution using Least Square Approximation (above)

3. Lease Square Regression Curve

- order corresponds to the highest exponent of x
- 1st order curve (line): $y = C_1 x + C_0$
- 2nd order curve (parabola): $y = C_2 x^2 + C_1 x + C_0$
- 3rd order curve: $y = C_3 x^3 + C_2 x^2 + C_1 x + C_0$
- nth order curve: $y = C_n X^n + ... + C_3 x^3 + C_2 x^2 + C_1 x + C_0$
- Theory: <u>a set of n data points can be fit perfectly with a curve of order n-1</u>
 e.g.: three points can be fit perfectly by a parabola.

4. Cross product

- definition: $v \times w = p$, cross product p is a vector
- magnitude:
 - the area of the parallelogram that vector *v*,*w* enclose
 - det([v,w])
- direction:
 - p is perpendicular to v and w
 - obeys the right hand rule (the forefinger points to v)

 $\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} c_1 \\ c_0 \end{bmatrix} =$

		ĥ
b	- 0 [- b
ĺ	ì	Col(A)

b