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Appendix S1 

Patients and Image Acquisition 
Patients in the primary cohort underwent a whole body integrated 18F-FDG PET/MRI scan at 
baseline on a 3T Signa PET/MRI scanner (GE Healthcare, Milwaukee, WI, USA), using a 32-
channel torso phased array coil and an eight-channel, receive-only head coil. Before the scan, 
patients had to fast for at least 4 hours and blood glucose levels had to be below 140 mg/dL. 18F-
FDG was administered intravenously 60 minutes before the scan at a dose of 3 megabecquerel 
per kg body weight. The imaging protocol consisted of an axial T1-weighted two-point Dixon 
Liver Acquisition with Volume Acquisition (LAVA) sequence (repetition time (TR) 4.2 ms, 
echo time (TE) 1.1, 2.3 ms, flip angle (FA) 5, slice thickness (SL) 5.2 mm) for attenuation 
correction and a higher-resolution LAVA sequence (TR 4.2 ms, TE 1.7, 3.4 ms, FA 15, SL 3,4 
mm) for anatomic coregistration. PET data were acquired simultaneously with MRI scans, using 
a 25 cm transaxial FOV and 3:30 minute acquisitions per PET bed. PET data were reconstructed 
using scanner-specific algorithms, (3D OSEM: 28 subsets, 2 iterations, with time of flight and 
point spread function information), accounting for attenuation from coils and patient cradle. 

Patients in the external test cohort underwent a whole body integrated 18F-FDG 
PET/MRI scan at baseline on a 3T Signa PET/MRI scanner (Siemens Healthineers, Erlangen, 
Germany), using a 16-channel torso phased array coil and a 16-channel head coil. Before the 
scan, patients had to fast for at least 4 hours and blood glucose levels had to be below 140 
mg/dL. 18F-FDG was administered intravenously 60 minutes before the scan at a dose of 3 
megabecquerel per kg body weight. The imaging protocol consisted of an axial T1-weighted 
two-point Dixon Volume Interpolated Breathhold Acquisition (VIBE) sequence (TR 3.95 ms, 
TEs 1.23, 2.46 ms, FA 10°, SL 3 mm) for attenuation correction and anatomic coregistration. 
PET data were acquired simultaneously with MRI scans, using a 25 cm transaxial FOV and 4 
minutes acquisitions per PET bed. PET data were reconstructed using scanner-specific 
algorithms, (3D OSEM: 21 subsets, 2 iterations), accounting for attenuation from coils and 
patient cradle. 

Radiotracer input data were used to generate 18F-FDG PET images. Low dose PET 
images were simulated by unlisting the PET list-mode data and reconstructing them based on the 
percentage of used counts. For the primary cohort, the list-mode PET input data collected over a 
time period of 3:30 and 2 seconds were used to simulate 100% and 1% 18F-FDG dose levels. 
For data acquired at the external site, PET Acquisition time was 4 minutes per bed position and 
low-dose PET images were simulated using the same relative dose levels accordingly. 

Image-preprocessing 
The preprocessing pipeline aimed to remove the additional burden of the network learning 
methods to find patterns between scans for final reconstruction. As opposed to traditional single 
time scan analyses, registration is essential for longitudinal studies to reduce the spatial 
discrepancies between scans acquired at different times for the same individual. Across all 
subjects, the follow-up scans were registered to the baseline MRI as the template using affine 
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transformation. We adopted ANTs, which is considered a state-of-the-art medical image 
registration toolkit. This ensured all of the scans were registered within each patient’s history. In 
addition, we used ITK-Snap to label the tumor regions in the baseline scan. The top five most 
prominent tumors (largest lesions) for each individual were delineated with ellipsoid-shaped 
masks. These tumor masks were used to mask out the tumor area of the baseline PET images to 
avoid introducing erroneous upstaging signals for the follow-up reconstruction. Top 0.1% of the 
pixels in PET images were clipped. Of note, the clipping operation is critical in model 
convergence and stabilizing training as these top pixels possess extreme high values and are 
outliers of the distribution. Lastly, all scans were normalized between zero and one before 
feeding them to the deep learning model. 

Proposed False Focal Loss 
The loss function is a cornerstone of the neural network model and determines the optimizing 
direction for model training. We applied the commonly used loss functions for the image 
restoration task, mean square error (MSE) loss and structural similarity index measure (SSIM) 
loss, and additionally designed the false focal loss (FF loss) for this study. FF loss is specifically 
proposed for 1% extremely ultra-low-dose PET reconstruction, as 1% PET images harbor 
substantial noise, making the model prone to induction of false positive errors. Erroneous 
upstaging on interim scans would lead to intensified treatment and potential side effects in the 
absence of viable tumor. FF loss alleviates the impact of these false upstaging focal areas in the 
output PET images by penalizing incorrect hyperintense pixels during each step of gradient 
descent in the training process. We formulate the FF loss as below: 

, 

where  and  refer to the reconstructed output and the ground truth PET, respectively. 

The indicator function of , where  denotes the subset of pixels satisfying , 
is defined as: 

. 

Coupled with MSE loss and SSIM loss, the composite loss function (as below) for 
optimizing Masked-LMCTrans encourages the PET reconstruction process to reduce noise, keep 
textures, and preserve structural details. 

. 

Data Augmentation 
Model performance improved with increasing training data sample size. We used random 
rotation, random shifting, and random zoom for data augmentation. During each step of 
stochastic gradient descent in the training process, we perturbed each training sample (both 
baseline and follow-up PET/MRI images; four combined inputs) with a random rotation 
between-20 to 20 degrees and with a random shift between-20%–20% across x and y axis, and 
with a random zoom between 0.8 to 1.2. Data augmentation resulted in improvement for all 
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models; around 1% improvement in SSIM metric for Masked-LMCTrans and slight 
improvement for U-net. 

Training Details 
Following ResNet (29) and ViT (30) (vision transformer), we used a learning rate warmup for 5 
epochs and then linearly decay the learning rate over the course of training. We trained the 
models with Adam (31) optimizer, using  and . We adopted three-fold cross-
validation for the primary cohort. Each fold has 23 paired baseline and follow-up PET/MRI 
scans (from 14 patients) for training, 8 paired scans for testing, and 3 paired scans for validation 
(from 7 patients). The training time using four NVIDIA GeForce RTX 3090 GPUs with 24GB 
VRAM was about 12 hours, and the reference time for each subject was only 10 seconds. 

Lessons from Model Training and Experiments 
We examined the difference of using slices from the axial plane or coronal plane and found that 
axial demonstrates superior performance. More details are provided in fig. S2. For the training 
scheme, we tried out multitask learning with segmentation added besides the objective 
reconstruction, but did not notice improvement. 
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Table S1 

Evaluation Results on 1% Extremely Ultra-low-dose PET Reconstruction-External 
Test Cohort 
 1% Ultra-low-dose PET (n = 10) Masked-LMCTrans PET (n = 10) P Value 
SSIM    
Mean (SD) 0.747 (0.045) 0.899 (0.028) <0.001 
Median (Q1, Q3) 0.764 (0.699, 0.779) 0.900 (0.872, 0.920)  
PSNR 
Mean (SD) 27.4 (0.99) 34.4 (1.61) <0.001 
Median (Q1, Q3) 29.2 (28.7, 30.3) 35.0 (34.0, 35.6)  
VIF 
Mean (SD) 0.112 (0.010) 0.254 (0.026) <0.001 
Median (Q1, Q3) 0.113 (0.106, 0.116) 0.257 (0.234, 0.270)  

Note.—The evaluation on the primary Stanford cohort; All comparisons are to the ground truth standard-count PET 
images; P values are calculated using Wilcoxon signed-rank test between the AI-reconstructed PET and the low-
count PET. SSIM = structural similarity index; PSNR = signal-to-noise ratio; VIF = visual information fidelity. 
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