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ABSTRACT

Chronic stroke lesion segmentation on magnetic resonance
imaging scans plays a critical role in helping physicians to
determine stroke patient prognosis. We propose a convo-
Iutional neural network (CNN) segmentation network - a
3D Cross-hemisphere Neighborhood Difference ConvNet -
which utilizes brain symmetry. The main novelty of this net-
work lies on a 3D cross-hemisphere neighborhood difference
layer which introduces robustness to position and scale in
brain symmetry. Such robustness is important in helping the
CNN distinguish between minute hemispheric differences
and the asymmetry caused by a lesion. We compared our
model with the state-of-the-art method using a chronic stroke
lesion segmentation database. Our results demonstrate the
effectiveness of the proposed model and the benefit of a CNN
that combines the physiologically based information, that is,
the brain symmetry property.

Index Terms— stroke lesion segmentation, brain symme-
try, convolutional neural networks

1. INTRODUCTION

Stroke is a disease that affects the arteries supplying the brain
parenchyma. It is the fifth highest cause of death and a lead-
ing cause of disability globally in the last 15 years. The pre-
cise delineation of an infarct is critical for understanding the
impact of the lesion on behavior and developing biomarkers
for stroke patient treatment and rehabilitation. Manual tracing
on brain magnetic resonance imaging (MRI) scans, the gold
standard for stroke lesion identification, can vary between ex-
perts and is a time consuming process. Therefore, there is a
real need for an automated segmentation algorithm for stroke
lesions. In this paper, we focus on the chronic stroke lesion.
A prominent feature in manual chronic stroke lesion iden-
tification is the symmetry of the brain across the midline axis
(left/right) on axial and coronal planes. For healthy brains,
the right and left hemispheres are approximate mirror images
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Fig. 1. (a) a MRI scan of a healthy brain. (b) a MRI scan of
a chronic stroke lesion patient. The green contour delineates
the lesion area. (c) An illustration of the brain symmetric
property. cl shows one slice from a 3D MRI scan of a stroke
patient. In c2, the yellow arrows point to healthy areas, and
the green arrow points to lesion areas. The four patches in the
middle are enlarged crops of c2. c3 shows the groundtruth
lesions, masked by color green.

of each other, as shown in Figure la. Strokes are either is-
chemic or hemorrhagic, with occlusion of an artery result-
ing in an infarct or rupture of an arterial aneurysm or arte-
riovenous malformation resulting in intracranial hemorrhage.
As the resulting lesion becomes chronic, the sequela of both
ischemic and hemorrhagic strokes is encephalomalacia and
gliosis. In either case, the location of the lesion is usually
limited to a single hemisphere due to the majority of blood
being delivered to the brain via the left or right carotid artery.
As a result, chronic infarcts often are asymmetric, as shown
in Figure 1b. Large infarcts involving both hemispheres con-
currently are less common; therefore, in this paper we only
focus on the unilateral cases.

The symmetry of the brain has been mostly ignored in
previous studies using convolution neural networks (CNN)
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which have revolutionized stroke lesion segmentation per-
formance both in terms of accuracy and computational ef-
ficiency [4] [5] [7]. One of the main challenges that limits
the use of the brain symmetry property is its complexity: the
brain is not perfectly symmetric at the pixel-level. Clinicians
can easily identify the abnormal area by comparing the hemi-
spheres and outlining the T1 and FLAIR hypointense core
infarct, but the symmetry itself cannot simply be outlined.
When it comes to the design of the neural network model,
some natural questions arise: How to embed the brain sym-
metry property into the CNN architecture? Specifically, how
to teach a CNN to distinguish between minute hemispheric
differences and the asymmetry caused by a lesion? Does
combining this physiologically based information - brain
symmetry property - with a CNN benefit the stroke lesion
segmentation?

Before answering these questions, we make an observa-
tion of an example case in Figure 1c: the lesion (indicated by
the green arrow in 1c2) and the normal crescent-shaped tem-
poral horns of the lateral ventricles (indicated by the yellow
arrows in 1c2). The dark chronic infarct with encephaloma-
lacia and gliosis (indicated by the green arrow) breaks brain
symmetry and can be clearly identified as a lesion. For the
crescent-shaped temporal horns, the situation is more com-
plicated. The left and right areas have a certain degree of
similarity, but they do not match perfectly in terms of shape,
size, and location because there is ex vacuo dilatation of the
temporal horn of the lateral ventricle on the side of the in-
farct and possibly because of normal asymmetry in the ven-
tricles. Despite this difference, they are labelled as non-lesion
regions and represent the lateral ventricular temporal horns.
Inspired by this observation, we propose a novel CNN seg-
mentation network - a 3D Cross-hemisphere Neighborhood
Difference ConvNet. The main novelty of this network lies on
a 3D cross-hemisphere neighborhood difference layer which
introduces robustness to location, scale and shape in brain
symmetry. The effectiveness of this layer is verified in §5. In
addition, the middle fusion in our network makes use of the
potential semantic information that high-level feature maps
present. These novel aspects of our network lead to an impor-
tant improvement over the previous state of the art method on
a chronic stroke lesion database of 70 subjects.

2. RELATED WORK

Recently, some work has made use of CNNs for lesion seg-
mentation. In [5] and [8], the authors proposed a CNN that
is trained and tested on 2D MR image slices, but ignored the
through-slice linking of lesions. DeepMedic 2017 [7] was one
of the first CNN-based methods to make use of the 3D nature
of MR images. The algorithm was based on two parallel fully
convolutional networks (FCNs) that operate on two different
image scales. However, these CNN-based methods ignore a
useful feature in stroke lesion segmentation: the symmetry of
the brain.

In [10], the brain symmetry property is introduced through
early fusion: the bilateral patch descriptors extracted from
left and right hemispheres are fed into two input channels
and fused right after the first convolution layer. This fusion
strategy does not make use of the neighborhood or high-level
semantic differences between the bilateral patches. Addi-
tional studies that inspired the proposal of our model is [1],
where the authors introduce an improved deep learning ar-
chitecture that adds robustness to positional differences for
person re-identification. Our work is different from person
re-identification in terms of the data and robustness demand,
which require a more complex design in a 3D network model.

3. THE MODEL ARCHITECTURE

We approach the chronic stroke lesion segmentation problem
by solving it patch by patch in the 3D space. Therefore, the
problem is converted into a patch-wise segmentation problem.
The input to the network for one evaluation consists of two
patches, a 25° original patch and a corresponding symmet-
ric patch extracted from the opposite hemisphere. The output
of the network generates independent prediction of the cen-
tral 93 voxels of the original patch. Below we introduce each
component of the model in sequential order. The framework
is shown in Figure 2.

3.1. Siamese Pathways

A siamese network calculates the similarity between the two
images by feeding them into two identical neural network
branches, and merging the two branches at the last layer. In-
spired by siamese networks, we extract the high-level feature
maps of each patch by passing them into two tied convolu-
tional pathways. Each pathway consists of eight convolu-
tional layers with 30 to 50 kernels of size 3 x 3 x 3, which is
similar to that described in DeepMedic [7]. At the end of the
two feature extraction pathways, 50 feature maps with size 9°
are generated to represent each input patch.

3.2. 3D Cross-hemisphere Neighborhood Difference Layer
(Upscale)

The siamese pathways provide two sets of 50 feature maps
for the original patch and the corresponding symmetric patch,
respectively. The intuitive next step is to compute the differ-
ence (at the brain level) and learn the relationship between
the two patches from the left and right hemispheres. Instead
of applying a 1 x 1 x 1 convolution (the most commonly used
fusing operation) which weighs the whole feature maps (100
feature maps) globally, we propose to add a cross-hemisphere
neighborhood difference layer. In this layer we introduce not
only neighborhood information, but also scale and location
robustness into the calculation of the similarity between the
two patches. The operation of this layer is defined as below.
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Fig. 2. An overview of the 3D Cross-hemisphere Neighborhood Difference ConvNet. NBHD is short for neighborhood. The
size of feature maps and the number of channels in each layer are depicted in the format (featuremap @channel).

Where

o [; € RY9%Y represents the ith (1 < i < 50) feature map
of the original patch

r; € R9X9%9 represents the ith (1 < i < 50) feature map
of the symmetric patch

(z,y,%) is a coordinate (1 < z < 9), (1 < y <
(1<2<9))

9),

li(x,y,2) and r;(x,y, ) represent pixels in I; and r; fea-
ture at location (x, y, 2)

e 1(3,3,3) €

Nri(z,y,2)] € R¥>3*3 is the 3 x 3 x 3 neighborhood
centered at r;(x, y, )

R3%3%3 jsa 3 x 3 x 3 matrix filled with ones

o k; € R¥*3*3 i5 a neighborhood difference map

In other words, the 3% matrix l;i is the difference of two
33 matrices, where the first matrix is filled with the same
scalar [;(z,y, z) (i.e., upsample /;(z,y, z) by a factor of 3)
and the second matrix is the 3% neighborhood in r; centered
at (z,y, z). The motivation of operation 1 is to incorporate
scale and location robustness into brain symmetry. By con-
catenating k; € R®*3%3 produced at each location of the ith
feature map, we get one output feature map k; € R27X27x27,
Since there are 50 feature maps (I;) extracted from the origi-
nal patch, we get 50 output feature maps, denoted as {k;}22,
By exchanging the order of /; and r;, another set of the out-
put feature maps is produced, denoted as {k; }2°,. The 3D
cross-hemisphere neighborhood difference layer upscales the
feature maps.

3.3. Neighborhood Summary Layer (Downscale)

After the cross-hemisphere neighborhood difference layer,
the network produces {k;}?%, and {k; }2°,, which means
each pixel in the output 93 patch is now represented by one
hundred (50+50) neighborhood difference matrices (maps) of
size 33. We summarize these 100 matrices by producing a
holistic representation. This can be easily achieved through a
3 x 3 x 3 kernel convolution (actually the real kernel size is
3 x 3 x 3 x 100) with a stride of 3 in each of the three direc-
tions. By matching the width of the neighborhood difference
cubic matrix to the stride, we make sure that each holistic
representation is computed locally within the neighborhood
difference map (size 3%). We apply 50 kernels in this layer,
resulting in 50 feature maps of size 9° .

3.4. Cross-channel Fusion

Two convolutional layers with 100 kernels of size 1 x 1 x 1
are adopted to fuse the 50 channels, generated from the neigh-
borhood summary layer. We then apply a convolutional layer
with one 1 x 1 x 1 kernel to generate the final prediction of
the central 93 patch.

3.5. The Comparison Models

Patch-wise Difference Model (PDM): we replace the
3D Cross-hemisphere Neighborhood Difference Layer and
Neighborhood Summary Layer with a 1 x 1 x 1 convolutional
layer which weighs the importance of the whole feature maps
(from both hemispheres) directly. 1x1x 1 convolutional layer
is commonly used to fuse multi-channel information [3].

Single Patch Model (SPM): only the original patch is
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Fig. 3. The left four images show qualitative comparison on subject one with dice 98.3% achieved by our method (ours). The
right four images show comparison on subject two with dice 72.3% achieved by our method.

fed into the network. No symmetry information is used. The
architectures follows one of the siamese pathways in § 3.1.

4. IMAGE PREPROCESSING AND DATASET

Briefly, the 3D brain data were standardized into the right-
anterior-superior (RAS) orientation. Next the subjects brain
was linearly warped to MNI152 template space using 3dAl-
linate in AFNI [2] in order to generate the axis of symmetry.
The brain was then skull stripped to extract the signal from the
brain only. We used the ROBEX [6] method. Finally, the bias
field created by magnetic field inhomogeneities, coil loading,
RF transmit errors, and head coil receive characteristics was
removed. The N4 Bias Field Correction [9] from the Insight
Segmentation and Registration Toolkit (ITK) was used.

Seventy participants (age: 58.4 + 11.9 yrs, 24 female),
with aphasia resulting from a single left-hemisphere stroke,
were recruited from three research laboratories. All par-
ticipants underwent identical imaging that was harmonized
across sites, which included a standard T1-weighted 3D
MPRAGE scan acquired in the sagittal plane with isotropic
resolution of 1mm?>. Ground truth lesions were generated
by experts using manual tracing, with MRIcro on the 3D T1
volume in native space.

5. EXPERIMENT

5.1. Classifier and Evaluation

Of the 70 patients with chronic stroke lesions, we randomly
selected 50 brains for training and 20 brains for testing. Gen-
erally, the lesion area is much smaller than the area of healthy
voxels. As a result, there is a class imbalance between the
number of lesion and healthy voxels. To alleviate this im-
balance, for each training case we extracted an equal number
of lesion and healthy patches. For training our model, this
resulted in 4000 patches in total for each brain, with 2000 le-
sion samples and 2000 healthy samples. The Dice similarity
index was used to determine the accuracy of the segmentation
network output.

5.2. Results and Discussion

We trained four models: our proposed method, PDM, and
SPM, as well as the state of the art method DeepMedic [7].

Method Dice(%) Variance
Ours 80.0 1.1
PDM 77.4 1.5
SPM 75.6 2.3
DeepMedic  76.9 2.1

Table 1. Performance on 20 testing subjects. PDM stands
for the patch-wise difference model. SPM is the single patch
model. DeepMedic is the state-of-the-art method

The test results are shown in Table 1. We can see that our pro-
posed method outperforms PDM by 2.6 points, SPM by 4.4
points, and DeepMedic (No symmetric information is used
in this work) by 3.1 points. While these improvements may
seem modest, at these levels of Dice (0.80) it is often hard
to make large improvements and these small changes have a
large impact on the quality of the lesion segmentation.
Figure 3 depicts two example subjects. For subject one
(the left four images), the 3D cross-hemisphere neighborhood
difference layer adds location and scale robustness in mea-
suring the brain symmetry, thus preventing a false positive
(the crescent-shape area - lateral ventricular temporal horns
- in the yellow rectangle) compared to PDM. The benefit of
adding brain symmetry is clearly shown in subject two (the
right four images), where the symmetric hypo-intensity syl-
vian fissure (the dark region within the yellow rectangle) is
misclassified as a lesion by SPM due to its limited local view.

6. CONCLUSION

In this paper, we verify that brain symmetry is beneficial for
chronic stroke lesion segmentation. Most importantly, we
propose a novel CNN segmentation network - a 3D Cross-
hemisphere Neighborhood Difference ConvNet, where the
novel 3D cross-hemisphere neighborhood difference layer
introduces the position and scale robustness to brain sym-
metry. The proposed idea is not confined to chronic stroke
lesion segmentation, but to any brain MRI segmentation tasks
influenced by the brain symmetric property.
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